论文标题

TSAM:因果情绪的两流注意力模型

TSAM: A Two-Stream Attention Model for Causal Emotion Entailment

论文作者

Zhang, Duzhen, Yang, Zhen, Meng, Fandong, Chen, Xiuyi, Zhou, Jie

论文摘要

因果情绪综合(CEE)旨在发现对话说法中情感背后的潜在原因。以前的作品将CEE正式为独立的话语对分类问题,情感和说话者信息被忽略了。从新的角度来看,本文考虑了联合框架中的CEE。我们同步对多种话语进行分类,以捕获全球观点中的话语之间的相关性,并提出一个两条注意力模型(TSAM),以有效地模拟说话者在会话历史上的情感影响。具体而言,TSAM包括三个模块:情感注意网络(EAN),说话者注意网络(SAN)和交互模块。 EAN和SAN并行结合了情感和说话者信息,随后的交互模块通过相互的Biaffine转换有效地互换了EAN和SAN之间的相关信息。广泛的实验结果表明,我们的模型实现了新的最新性能(SOTA)性能,并且表现出色的基准。

Causal Emotion Entailment (CEE) aims to discover the potential causes behind an emotion in a conversational utterance. Previous works formalize CEE as independent utterance pair classification problems, with emotion and speaker information neglected. From a new perspective, this paper considers CEE in a joint framework. We classify multiple utterances synchronously to capture the correlations between utterances in a global view and propose a Two-Stream Attention Model (TSAM) to effectively model the speaker's emotional influences in the conversational history. Specifically, the TSAM comprises three modules: Emotion Attention Network (EAN), Speaker Attention Network (SAN), and interaction module. The EAN and SAN incorporate emotion and speaker information in parallel, and the subsequent interaction module effectively interchanges relevant information between the EAN and SAN via a mutual BiAffine transformation. Extensive experimental results demonstrate that our model achieves new State-Of-The-Art (SOTA) performance and outperforms baselines remarkably.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源