论文标题

部分可观测时空混沌系统的无模型预测

Hybrid Optimized Deep Convolution Neural Network based Learning Model for Object Detection

论文作者

Beri, Venkata

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Object identification is one of the most fundamental and difficult issues in computer vision. It aims to discover object instances in real pictures from a huge number of established categories. In recent years, deep learning-based object detection techniques that developed from computer vision have grabbed the public's interest. Object recognition methods based on deep learning frameworks have quickly become a popular way to interpret moving images acquired by various sensors. Due to its vast variety of applications for various computer vision tasks such as activity or event detection, content-based image retrieval, and scene understanding, academics have spent decades attempting to solve this problem. With this goal in mind, a unique deep learning classification technique is used to create an autonomous object detecting system. The noise destruction and normalising operations, which are carried out using gaussian filter and contrast normalisation techniques, respectively, are the first steps in the study activity. The pre-processed picture is next subjected to entropy-based segmentation algorithms, which separate the image's significant areas in order to distinguish between distinct occurrences. The classification challenge is completed by the suggested Hybrid Optimized Dense Convolutional Neural Network (HODCNN). The major goal of this framework is to aid in the precise recognition of distinct items from the gathered input frames. The suggested system's performance is assessed by comparing it to existing machine learning and deep learning methodologies. The experimental findings reveal that the suggested framework has a detection accuracy of 0.9864, which is greater than current techniques. As a result, the suggested object detection model outperforms other current methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源