论文标题

结合增强学习和最佳旅行推销员问题的运输

Combining Reinforcement Learning and Optimal Transport for the Traveling Salesman Problem

论文作者

Goh, Yong Liang, Lee, Wee Sun, Bresson, Xavier, Laurent, Thomas, Lim, Nicholas

论文摘要

旅行推销员问题是具有强烈精确算法的基本组合优化问题。但是,随着问题的扩大,这些精确的算法无法在合理的时间内提供解决方案。为了解决这一问题,当前的作品旨在利用深度学习来构建合理的解决方案。这样的努力非常成功,但往往会很慢且计算密集。本文举例说明了熵正规化的最佳运输技术作为深度加固学习网络中的一层的整合。我们表明,我们可以构建一个能够学习的模型,而无需监督和推论要比当前的自回归方法要快得多。我们还经验评估了在深度学习模型中包括最佳运输算法的好处,以在端到端培训期间执行分配约束。

The traveling salesman problem is a fundamental combinatorial optimization problem with strong exact algorithms. However, as problems scale up, these exact algorithms fail to provide a solution in a reasonable time. To resolve this, current works look at utilizing deep learning to construct reasonable solutions. Such efforts have been very successful, but tend to be slow and compute intensive. This paper exemplifies the integration of entropic regularized optimal transport techniques as a layer in a deep reinforcement learning network. We show that we can construct a model capable of learning without supervision and inferences significantly faster than current autoregressive approaches. We also empirically evaluate the benefits of including optimal transport algorithms within deep learning models to enforce assignment constraints during end-to-end training.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源