论文标题

贝叶斯CT的结构高斯先验

Structural Gaussian Priors for Bayesian CT reconstruction of Subsea Pipes

论文作者

Christensen, Silja L., Riis, Nicolai A. B., Uribe, Felipe, Jørgensen, Jakob S.

论文摘要

X射线计算机断层扫描(CT)的非破坏性测试(NDT)应用是通过2D横截面扫描对海底管进行检查。由于具有挑战性的海底环境,数据采集既费时又昂贵。减少扫描中的投影数量可以节省时间和成本,但是如果使用常规的重建方法,则会损害重建质量。在这项工作中,我们采用贝叶斯方法来重建CT,并专注于设计有效的方法,然后再利用有关管道几何形状的可用结构信息。我们提出了一类新的结构高斯先验,以基于独立的高斯先生的不同区域在不同区域内通过高斯马尔可夫随机场(GMRF)在重建图像的不同区域中执行预期的材料特性。合成和实际数据的数值实验表明,与仅使用全局GMRF之前或根本没有先验相比,提出的结构高斯先验可以减少伪影并增强重建的对比度。我们展示了如何为大规模图像进行有效采样所得的后验分布,这对于实际NDT应用至关重要。

A non-destructive testing (NDT) application of X-ray computed tomography (CT) is inspection of subsea pipes in operation via 2D cross-sectional scans. Data acquisition is time-consuming and costly due to the challenging subsea environment. Reducing the number of projections in a scan can yield time and cost savings, but compromises the reconstruction quality, if conventional reconstruction methods are used. In this work we take a Bayesian approach to CT reconstruction and focus on designing an effective prior to make use of available structural information about the pipe geometry. We propose a new class of structural Gaussian priors to enforce expected material properties in different regions of the reconstructed image based on independent Gaussian priors in combination with global regularity through a Gaussian Markov Random Field (GMRF) prior. Numerical experiments with synthetic and real data show that the proposed structural Gaussian prior can reduce artifacts and enhance contrast in the reconstruction compared to using only a global GMRF prior or no prior at all. We show how the resulting posterior distribution can be efficiently sampled even for large-scale images, which is essential for practical NDT applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源