论文标题

光子晶格中浮子绕组带的拓扑特性

Topological properties of Floquet winding bands in a photonic lattice

论文作者

Adiyatullin, Albert F., Upreti, Lavi K., Lechevalier, Corentin, Evain, Clement, Copie, Francois, Suret, Pierre, Randoux, Stephane, Delplace, Pierre, Amo, Alberto

论文摘要

以以上一类拓扑不变的为特征的合成材料的工程是基于固态和合成材料的当前挑战之一。使用在两耦合环系统中实现的合成光子晶格,我们设计了一种异常的浮雕金属,该金属在散装中是无间隙的,并同时显示了两种不同的拓扑特性。一方面,该合成晶格呈现出以绕组数为特征的带。绕组来自反转对称的破裂,它直接与Bloch亚镜头内的外观有关。另一方面,晶格的浮雕性质导致具有拓扑边缘状态的众所周知的异常绝缘阶段。在这里研究的破碎反转对称性和周期性调制的结合丰富了在经受浮动驾驶的晶格中可用的各种拓扑阶段的多样性,并表明当定期调制与空间对称性的破裂结合时,新阶段的出现可能出现。

The engineering of synthetic materials characterised by more than one class of topological invariants is one of the current challenges of solid-state based and synthetic materials. Using a synthetic photonic lattice implemented in a two-coupled ring system we engineer an anomalous Floquet metal that is gapless in the bulk and shows simultaneously two different topological properties. On the one hand, this synthetic lattice presents bands characterised by a winding number. The winding emerges from the breakup of inversion symmetry and it directly relates to the appearance of Bloch suboscillations within its bulk. On the other hand, the Floquet nature of the lattice results in well-known anomalous insulating phases with topological edge states. The combination of broken inversion symmetry and periodic time modulation studied here enrich the variety of topological phases available in lattices subject to Floquet driving and suggest the possible emergence of novel phases when periodic modulation is combined with the breakup of spatial symmetries.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源