论文标题

关于公制调整偏斜信息的不确定性关系的注释

A note on uncertainty relations of metric-adjusted skew information

论文作者

Zhang, Qing-Hua, Wu, Jing-Feng, Ma, Xiaoyu, Fei, Shao-Ming

论文摘要

不确定性原理是量子力学的基本特征之一,在量子信息处理中起着至关重要的作用。我们研究了基于指标调整的偏斜信息的不确定性关系,以获取有限的量子可观察物。在论文[物理评论A 104,052414(2021)]中,我们在不同的规范不平等方面建立了更严格的不确定性关系。自然,我们将方法概括为量子通道和单一操作员的度量调整偏斜信息的不确定性关系。由于Wigner-Yanase-Dyson偏斜信息和量子Fisher信息是与不同的Morozozova-Chentsov函数相对应的度量调整后的偏斜信息的特殊情况,我们的结果推广了一些现有的不确定性关系。给出详细的示例以说明我们方法的优势。

The uncertainty principle is one of the fundamental features of quantum mechanics and plays a vital role in quantum information processing. We study uncertainty relations based on metric-adjusted skew information for finite quantum observables. Motivated by the paper [Physical Review A 104, 052414 (2021)], we establish tighter uncertainty relations in terms of different norm inequalities. Naturally, we generalize the method to uncertainty relations of metric-adjusted skew information for quantum channels and unitary operators. As both the Wigner-Yanase-Dyson skew information and the quantum Fisher information are the special cases of the metric-adjusted skew information corresponding to different Morozova-Chentsov functions, our results generalize some existing uncertainty relations. Detailed examples are given to illustrate the advantages of our methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源