论文标题
渐进语义中反问题的分析解决方案
Analytical Solutions for the Inverse Problem within Gradual Semantics
论文作者
论文摘要
抽象论证中的逐渐语义将数字分数与系统中的每个参数相关联,该分数代表了该参数的可接受性级别,并且可以从中得出优先顺序。尽管某些语义是通过标准论证框架运行的,但许多语义使用了一个加权框架,其中每个参数与数字初始权重相关联。最近的工作检查了渐进语义中的反问题。逆问题不是确定偏好序列的论证框架和语义,而是采用论证框架,逐渐的语义和偏好序列作为输入,并确定在框架中为了获得所需优先顺序的框架中的争论所需的权重。现有工作使用根找到算法(二次方法)来识别适当的初始权重,从而在数值上攻击了反问题。在本文中,我们证明,对于一类逐渐的语义,可以使用分析方法来解决反问题。与当前的最新方法不同,这种分析方法可以迅速找到解决方案,并可以保证这样做。在获得此结果时,我们能够证明以前工作作为猜想所提出的几个重要特性。
Gradual semantics within abstract argumentation associate a numeric score with every argument in a system, which represents the level of acceptability of this argument, and from which a preference ordering over arguments can be derived. While some semantics operate over standard argumentation frameworks, many utilise a weighted framework, where a numeric initial weight is associated with each argument. Recent work has examined the inverse problem within gradual semantics. Rather than determining a preference ordering given an argumentation framework and a semantics, the inverse problem takes an argumentation framework, a gradual semantics, and a preference ordering as inputs, and identifies what weights are needed to over arguments in the framework to obtain the desired preference ordering. Existing work has attacked the inverse problem numerically, using a root finding algorithm (the bisection method) to identify appropriate initial weights. In this paper we demonstrate that for a class of gradual semantics, an analytical approach can be used to solve the inverse problem. Unlike the current state-of-the-art, such an analytic approach can rapidly find a solution, and is guaranteed to do so. In obtaining this result, we are able to prove several important properties which previous work had posed as conjectures.