论文标题
边缘理想的二元定理
A duality theorem for the ic-resurgence of edge ideals
论文作者
论文摘要
这项工作的目的是使用线性编程和多面体几何形状来证明边缘理想的偶性公式。我们表明,边缘的iC resurgence是杂乱的$ \ mathcal {c} $的理想$ i $,而边缘的ic-resurgence of blocker $ \ mathcal {c}^\ vee $的ic-resurgence $ i^\ vee $的$ \ vee $ $ \ vee $ of Mathcal {c} $ comciencide。如果$ \ MATHCAL {C} $是某些统一曲面的基础的混乱,我们恢复了$ i $的重新外观的公式,并且如果$ \ Mathcal {c} $是具有完美匹配的连接的非双色图形,我们为Waldschmidt常数$ i^\ i^\ veee提供了一个完美的匹配。
The aim of this work is to use linear programming and polyhedral geometry to prove a duality formula for the ic-resurgence of edge ideals. We show that the ic-resurgence of the edge ideal $I$ of a clutter $\mathcal{C}$ and the ic-resurgence of the edge ideal $I^\vee$ of the blocker $\mathcal{C}^\vee$ of $\mathcal{C}$ coincide. If $\mathcal{C}$ is the clutter of bases of certain uniform matroids, we recover a formula for the resurgence of $I$, and if $\mathcal{C}$ is a connected non-bipartite graph with a perfect matching, we show a formula for the Waldschmidt constant of $I^\vee$.