论文标题

从双重变焦观察中为真实世界超级分辨率进行自我监督的学习

Self-Supervised Learning for Real-World Super-Resolution from Dual Zoomed Observations

论文作者

Zhang, Zhilu, Wang, Ruohao, Zhang, Hongzhi, Chen, Yunjin, Zuo, Wangmeng

论文摘要

在本文中,我们考虑了基于参考的超分辨率(REFSR)中的两个具有挑战性的问题,(i)如何选择适当的参考图像,以及(ii)如何以一种自我监督的方式学习真实世界RefSR。特别是,我们从Dual Camera Zooms(SelfDZSR)的观察结果中提出了一种新颖的自我监督学习方法,用于现实世界中的图像SR。考虑到多台相机在现代智能手机中的普及,可以自然利用越来越多的缩放(远摄)图像作为指导较小的变焦(短对焦)图像的SR。此外,SelfDZSR学习了一个深层网络,以获得短对焦图像的SR结果,以具有与远摄映像相同的分辨率。为此,我们将远摄图像而不是其他高分辨率图像作为监督信息,然后从中选择中心贴片作为对相应的短对焦图像补丁的引用。为了减轻短对焦低分辨率(LR)图像和远摄地面真相(GT)图像之间的未对准效果,我们设计了辅助LR发电机,并将GT映射到辅助LR,同时保持空间位置不变。然后,辅助-LR可以用于通过所提出的自适应空间变压器网络(ADASTN)将LR特征变形,并将REF特征与GT匹配。在测试过程中,可以直接部署SelfDZSR,以使用远摄映像的引用来超级解决整个短对焦图像。实验表明,我们的方法对最先进的方法实现了更好的定量和定性性能。代码可在https://github.com/cszhilu1998/selfdzsr上找到。

In this paper, we consider two challenging issues in reference-based super-resolution (RefSR), (i) how to choose a proper reference image, and (ii) how to learn real-world RefSR in a self-supervised manner. Particularly, we present a novel self-supervised learning approach for real-world image SR from observations at dual camera zooms (SelfDZSR). Considering the popularity of multiple cameras in modern smartphones, the more zoomed (telephoto) image can be naturally leveraged as the reference to guide the SR of the lesser zoomed (short-focus) image. Furthermore, SelfDZSR learns a deep network to obtain the SR result of short-focus image to have the same resolution as the telephoto image. For this purpose, we take the telephoto image instead of an additional high-resolution image as the supervision information and select a center patch from it as the reference to super-resolve the corresponding short-focus image patch. To mitigate the effect of the misalignment between short-focus low-resolution (LR) image and telephoto ground-truth (GT) image, we design an auxiliary-LR generator and map the GT to an auxiliary-LR while keeping the spatial position unchanged. Then the auxiliary-LR can be utilized to deform the LR features by the proposed adaptive spatial transformer networks (AdaSTN), and match the Ref features to GT. During testing, SelfDZSR can be directly deployed to super-solve the whole short-focus image with the reference of telephoto image. Experiments show that our method achieves better quantitative and qualitative performance against state-of-the-arts. Codes are available at https://github.com/cszhilu1998/SelfDZSR.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源