论文标题
使用立体声愿景的自我监督在线学习,以进行安全关键控制
Self-Supervised Online Learning for Safety-Critical Control using Stereo Vision
论文作者
论文摘要
随着在障碍物识别和状态估计中使用基于复杂视力的传感方法的越来越多,表征与环境相关的测量误差的表征已成为现代机器人技术的困难和重要组成部分。本文提出了一种自制的学习方法,以实现安全至关重要的控制。特别是,估计与立体声视觉相关的不确定性,并在线适应了新的视觉环境,其中该估计值以强大的方式以安全至关重要的控制器利用。为此,我们提出了一种利用立体视觉结构来学习不确定性估计的算法,而无需基于基础数据。然后,我们将在存在此不确定性估计的情况下鲁棒性基于控制屏障功能的控制器提供安全性。我们在各种环境中证明了我们方法对四倍体机器人的功效。当不使用我们的方法安全时,就会违反安全性。仅凭离线培训,我们就会观察到机器人是安全的,但保守性过高。借助我们的在线方法,四足动物仍然安全,保守主义减少了。
With the increasing prevalence of complex vision-based sensing methods for use in obstacle identification and state estimation, characterizing environment-dependent measurement errors has become a difficult and essential part of modern robotics. This paper presents a self-supervised learning approach to safety-critical control. In particular, the uncertainty associated with stereo vision is estimated, and adapted online to new visual environments, wherein this estimate is leveraged in a safety-critical controller in a robust fashion. To this end, we propose an algorithm that exploits the structure of stereo-vision to learn an uncertainty estimate without the need for ground-truth data. We then robustify existing Control Barrier Function-based controllers to provide safety in the presence of this uncertainty estimate. We demonstrate the efficacy of our method on a quadrupedal robot in a variety of environments. When not using our method safety is violated. With offline training alone we observe the robot is safe, but overly-conservative. With our online method the quadruped remains safe and conservatism is reduced.