论文标题

带有知情先验的嵌套贝叶斯因素的一般近似

A general approximation to nested Bayes factors with informed priors

论文作者

Bartoš, František, Wagenmakers, Eric-Jan

论文摘要

贝叶斯模型比较和假设检验的主食,贝叶斯因子通常用于量化两个竞争对手假设的相对预测性能。但是,贝叶斯因素的计算可能具有挑战性,这有助于方便近似(例如BIC)的普及。不幸的是,在有知情的先验分布的情况下,这些近似可能会失败。在这里,我们通过概述近似值的近似值来解决此问题,以了解焦点参数$θ$。近似在计算上很简单,仅需要最大似然估计$ \hatθ$及其标准误差。近似值使用$θ$的估计可能性,并假定$θ$的后验分布不受滋扰参数的先验分布的选择影响。零假设$ \ MATHCAL {H} _0:θ=θ_0$与替代假设$ \ MATHCAL {H} _1:θ\ SIM G(θ)$相对于替代假设$ \ sim g(θ)$,使用Savage-dickey-dickey密度比很容易获得。与桥接采样和拉普拉斯的方法相比,三个真实数据示例突出了近似值的速度和接近度。提出的近似促进了贝叶斯的标准频繁效果的贝叶斯重新分析,鼓励使用知情先验的贝叶斯测试应用,并减轻了经常挫败贝叶斯灵敏度分析和贝叶斯因素因素设计分析的计算挑战。近似值显示出在小样本量下遭受的痛苦,当焦点参数的后验分布基本上受滋扰参数的先前分布的影响。所提出的方法还可以用于近似于$ \ Mathcal {H} _1 $的$θ$的后验分布。

A staple of Bayesian model comparison and hypothesis testing, Bayes factors are often used to quantify the relative predictive performance of two rival hypotheses. The computation of Bayes factors can be challenging, however, and this has contributed to the popularity of convenient approximations such as the BIC. Unfortunately, these approximations can fail in the case of informed prior distributions. Here we address this problem by outlining an approximation to informed Bayes factors for a focal parameter $θ$. The approximation is computationally simple and requires only the maximum likelihood estimate $\hatθ$ and its standard error. The approximation uses an estimated likelihood of $θ$ and assumes that the posterior distribution for $θ$ is unaffected by the choice of prior distribution for the nuisance parameters. The resulting Bayes factor for the null hypothesis $\mathcal{H}_0: θ= θ_0$ versus the alternative hypothesis $\mathcal{H}_1: θ\sim g(θ)$ is then easily obtained using the Savage--Dickey density ratio. Three real-data examples highlight the speed and closeness of the approximation compared to bridge sampling and Laplace's method. The proposed approximation facilitates Bayesian reanalyses of standard frequentist results, encourages application of Bayesian tests with informed priors, and alleviates the computational challenges that often frustrate both Bayesian sensitivity analyses and Bayes factor design analyses. The approximation is shown to suffer under small sample sizes and when the posterior distribution of the focal parameter is substantially influenced by the prior distributions on the nuisance parameters. The proposed methodology may also be used to approximate the posterior distribution for $θ$ under $\mathcal{H}_1$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源