论文标题
咖啡馆:学会通过对齐功能来凝结数据集
CAFE: Learning to Condense Dataset by Aligning Features
论文作者
论文摘要
数据集的凝结旨在通过将繁琐的训练组合为紧凑的合成训练来减少网络培训工作。最先进的方法在很大程度上依赖于学习合成数据,通过与真实数据批次和合成数据批次之间的梯度相匹配。尽管具有直观的动机和有希望的结果,但这种基于梯度的方法本质上很容易过度地适合产生主导梯度的偏置样本,从而缺乏全球数据分布的监督。在本文中,我们提出了一种新颖的方案,通过对齐功能(CAFE)来凝结数据集,该方案明确地试图保留实时分布以及所得合成集的判别能力,并将其本身借给了对各种体系结构的强大概括能力。我们方法的核心是一种有效的策略,可以使各个尺度上的真实和合成数据与真实样品的分类相结合。我们的方案得到了一种新型的动态双层优化的进一步支持,该优化可自适应调整参数更新以防止过度拟合。我们在各个数据集中验证了拟议的咖啡馆,并证明它通常优于最新技术:例如,在SVHN数据集中,性能增益高达11%。广泛的实验和分析验证了拟议设计的有效性和必要性。
Dataset condensation aims at reducing the network training effort through condensing a cumbersome training set into a compact synthetic one. State-of-the-art approaches largely rely on learning the synthetic data by matching the gradients between the real and synthetic data batches. Despite the intuitive motivation and promising results, such gradient-based methods, by nature, easily overfit to a biased set of samples that produce dominant gradients, and thus lack global supervision of data distribution. In this paper, we propose a novel scheme to Condense dataset by Aligning FEatures (CAFE), which explicitly attempts to preserve the real-feature distribution as well as the discriminant power of the resulting synthetic set, lending itself to strong generalization capability to various architectures. At the heart of our approach is an effective strategy to align features from the real and synthetic data across various scales, while accounting for the classification of real samples. Our scheme is further backed up by a novel dynamic bi-level optimization, which adaptively adjusts parameter updates to prevent over-/under-fitting. We validate the proposed CAFE across various datasets, and demonstrate that it generally outperforms the state of the art: on the SVHN dataset, for example, the performance gain is up to 11%. Extensive experiments and analyses verify the effectiveness and necessity of proposed designs.