论文标题
动量感知的轨迹优化和敏捷四倍运动的控制
Momentum-Aware Trajectory Optimization and Control for Agile Quadrupedal Locomotion
论文作者
论文摘要
在这封信中,我们提出了一种多功能的层次离线计划算法,以及用于敏捷四足球运动的在线控制管道。我们的离线规划师在优化降低阶模型和全身轨迹优化的优化中心动力学之间进行交替,以实现动力学共识。我们使用等等椭圆形参数化的新型动量惯性意识到的中心优化能够通过``惯性塑造''来产生高度的杂技动作。我们的全身优化方法可显着提高基于标准DDP的方法,通过迭代的转换为中心控制,可以通过基于标准的DDP方法来提高,从而通过互联网进行了指导。我们的控制器可以有效地优化接触力和单个优化的关节加速度,与现有的四足动物MPC控制器相比,可以更直接地跟踪富动量的动作。并控制扭曲的跳跃操作中的管道。
In this letter, we present a versatile hierarchical offline planning algorithm, along with an online control pipeline for agile quadrupedal locomotion. Our offline planner alternates between optimizing centroidal dynamics for a reduced-order model and whole-body trajectory optimization, with the aim of achieving dynamics consensus. Our novel momentum-inertia-aware centroidal optimization, which uses an equimomental ellipsoid parameterization, is able to generate highly acrobatic motions via ``inertia shaping". Our whole-body optimization approach significantly improves upon the quality of standard DDP-based approaches by iteratively exploiting feedback from the centroidal level. For online control, we have developed a novel convex model predictive control scheme through a linear transformation of the full centroidal dynamics. Our controller can efficiently optimize for both contact forces and joint accelerations in single optimization, enabling more straightforward tracking for momentum-rich motions compared to existing quadrupedal MPC controllers. We demonstrate the capability and generality of our trajectory planner on four different dynamic maneuvers. We then present one hardware experiment on the MIT Mini Cheetah platform to demonstrate the performance of the entire planning and control pipeline on a twisting jump maneuver.