论文标题

曲率图生成对抗网络

Curvature Graph Generative Adversarial Networks

论文作者

Li, Jianxin, Fu, Xingcheng, Sun, Qingyun, Ji, Cheng, Tan, Jiajun, Wu, Jia, Peng, Hao

论文摘要

生成对抗网络(GAN)被广泛用于图形数据上的广义学习和稳健的学习。但是,对于非欧国人图数据,现有的基于GAN的图形表示方法通过离散空间中的随机行走或遍历产生负样本,从而导致拓扑特性的信息丢失(例如层次结构和圆形性)。此外,由于图数据的拓扑异质性(即图表结构之间的不同密度),它们遭受了严重的拓扑失真问题。在本文中,我们提出了一种新颖的曲率图生成对抗网络方法,称为\ textbf {\ modelname},这是Riemannian几何歧管中的第一个基于GAN的图形表示方法。为了更好地保留拓扑特性,我们将离散结构近似为连续的riemannian几何歧管,并从包含的正态分布中有效地产生负样本。为了处理拓扑异质性,我们利用具有不同拓扑特性的局部结构的RICCI曲率,以获得低衰变表示。广泛的实验表明,库尔夫根(Curvgan)始终如一地超过了多个任务的最先进方法,并显示出卓越的鲁棒性和概括。

Generative adversarial network (GAN) is widely used for generalized and robust learning on graph data. However, for non-Euclidean graph data, the existing GAN-based graph representation methods generate negative samples by random walk or traverse in discrete space, leading to the information loss of topological properties (e.g. hierarchy and circularity). Moreover, due to the topological heterogeneity (i.e., different densities across the graph structure) of graph data, they suffer from serious topological distortion problems. In this paper, we proposed a novel Curvature Graph Generative Adversarial Networks method, named \textbf{\modelname}, which is the first GAN-based graph representation method in the Riemannian geometric manifold. To better preserve the topological properties, we approximate the discrete structure as a continuous Riemannian geometric manifold and generate negative samples efficiently from the wrapped normal distribution. To deal with the topological heterogeneity, we leverage the Ricci curvature for local structures with different topological properties, obtaining to low-distortion representations. Extensive experiments show that CurvGAN consistently and significantly outperforms the state-of-the-art methods across multiple tasks and shows superior robustness and generalization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源