论文标题
分布式矩阵矢量乘以稀疏性和隐私保证
Distributed Matrix-Vector Multiplication with Sparsity and Privacy Guarantees
论文作者
论文摘要
我们考虑设计一个编码方案的问题,该方案允许分布式矩阵矢量乘法既可以稀疏和隐私。完美的信息理论隐私需要将输入稀疏矩阵编码为从所考虑的字母内随机分布的矩阵;从而破坏了稀疏性。稀疏矩阵的计算矩阵矢量乘法已知快速。在非板块编码的矩阵上分发计算可保持隐私,但引入了人工计算延迟。在这项工作中,我们放宽了隐私限制,并表明可以在编码的矩阵中保持一定程度的稀疏性。我们在假设两个工人的存在时考虑了首席/工人的设置:一个完全不信任,所有工人都在输入矩阵上窃取了窃听,并且必须满足完美的隐私;在部分值得信赖的集群中,只有多达$ z $的工人可以碰撞,并且允许透露有关输入矩阵的少量信息。我们设计了一个计划,该计划将稀疏性用于隐私,同时达到所需的约束。我们使用编码矩阵的循环任务分配来容忍局部和完整的散布器。
We consider the problem of designing a coding scheme that allows both sparsity and privacy for distributed matrix-vector multiplication. Perfect information-theoretic privacy requires encoding the input sparse matrices into matrices distributed uniformly at random from the considered alphabet; thus destroying the sparsity. Computing matrix-vector multiplication for sparse matrices is known to be fast. Distributing the computation over the non-sparse encoded matrices maintains privacy, but introduces artificial computing delays. In this work, we relax the privacy constraint and show that a certain level of sparsity can be maintained in the encoded matrices. We consider the chief/worker setting while assuming the presence of two clusters of workers: one is completely untrusted in which all workers collude to eavesdrop on the input matrix and in which perfect privacy must be satisfied; in the partly trusted cluster, only up to $z$ workers may collude and to which revealing small amount of information about the input matrix is allowed. We design a scheme that trades sparsity for privacy while achieving the desired constraints. We use cyclic task assignments of the encoded matrices to tolerate partial and full stragglers.