论文标题

使用基于Pauli的计算的量子电路编译和混合计算

Quantum circuit compilation and hybrid computation using Pauli-based computation

论文作者

Peres, Filipa C. R., Galvão, Ernesto F.

论文摘要

基于Pauli的计算(PBC)是由对Pauli可观察物的一系列自适应,无损的测量序列驱动的。任何根据Clifford+$ t $ Gate Set和拥有$ T $ T $ T $门编写的量子电路都可以通过$ t $ Qubits汇编为PBC。在这里,我们提出实施PBC作为自适应量子电路的实用方法,并提供代码来进行所需的经典辅助处理。我们的计划将量子门的数量减少到$ o(t^2)$(从以前的$ o(t^3 / \ log t)$缩放)和时间 /时间折衷进行了讨论,这使深度从$ o(t \ log t)$减少到$ o(t)$ o(t)$(t)$,以$ t $ t $ t $ t $ tuxy auxiary auxiry qubits。我们将随机和隐藏转移量子电路的示例汇编为自适应PBC电路。我们还模拟了混合量子计算,其中一台经典的计算机有效地将小量子计算机的工作记忆扩展到$ k $虚拟量子位,以$ k $的成本指数为代价。我们的结果证明了PBC技术用于电路编译和混合计算的实际优势。

Pauli-based computation (PBC) is driven by a sequence of adaptively chosen, non-destructive measurements of Pauli observables. Any quantum circuit written in terms of the Clifford+$T$ gate set and having $t$ $T$ gates can be compiled into a PBC on $t$ qubits. Here we propose practical ways of implementing PBC as adaptive quantum circuits and provide code to do the required classical side-processing. Our schemes reduce the number of quantum gates to $O(t^2)$ (from a previous $O(t^3 / \log t)$ scaling) and space/time trade-offs are discussed which lead to a reduction of the depth from $O(t \log t)$ to $O(t)$ within our schemes, at the cost of $t$ additional auxiliary qubits. We compile examples of random and hidden-shift quantum circuits into adaptive PBC circuits. We also simulate hybrid quantum computation, where a classical computer effectively extends the working memory of a small quantum computer by $k$ virtual qubits, at a cost exponential in $k$. Our results demonstrate the practical advantage of PBC techniques for circuit compilation and hybrid computation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源