论文标题

部分可观测时空混沌系统的无模型预测

Nonlinear Reduced Order Modelling of Soil Structure Interaction Effects via LSTM and Autoencoder Neural Networks

论文作者

Simpson, Thomas, Dervilis, Nikolaos, Couturier, Philippe, Maljaars, Nico, Chatzi, Eleni

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

In the field of structural health monitoring (SHM), inverse problems which require repeated analyses are common. With the increase in the use of nonlinear models, the development of nonlinear reduced order modelling techniques is of paramount interest. Of considerable research interest, is the use of flexible and scalable machine learning methods which can learn to approximate the behaviour of nonlinear dynamic systems using input and output data. One such nonlinear system of interest, in the context of wind turbine structures, is the soil structure interaction (SSI) problem. Soil demonstrates strongly nonlinear behaviour with regards to its restoring force and has been shown to considerably influence the dynamic response of wind turbine structures. In this work, we demonstrate the application of a recently developed nonlinear reduced order modelling method, which leverages Autoencoder and LSTM neural networks, to a nonlinear soil structure interaction problem of a wind turbine monopile subject to realistic loading at the seabed level. The accuracy and efficiency of the methodology is compared to full order simulations carried out using Abaqus. The ROM was shown to have good fidelity and a considerable reduction in computational time for the system considered.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源