论文标题

多变量点null测试的一般自适应框架

A general adaptive framework for multivariate point null testing

论文作者

Elder, Adam, Carone, Marco, Gilbert, Peter, Luedtke, Alex

论文摘要

作为完善其科学询问的普遍步骤,研究人员通常有兴趣对特定统计假设进行一些筛查。例如,他们可能希望确定几个患者特征中的任何一个与感兴趣的健康结果有关。现有用于测试多元假设的通用方法(例如应用于单个假设检验的多样性校正)可以轻松地在各种问题上应用,但在某些情况下可能会遭受低功率。量身定制的程序可以通过围绕特定问题的信息来构建较高的功率,但通常不能轻易适应新颖的设置。在这项工作中,我们提出了一个一般框架,用于测试多元点null假设,其中测试统计量可以自适应地选择增加功率。我们在固定和局部替代方案下为我们的测试提供了理论大样本保证。在仿真研究中,我们表明,使用我们的框架创建的测试可以执行以及量身定制的方法,并且我们说明了如何使用我们的过程在目前尚无裁缝方法的两种设置中创建测试。

As a common step in refining their scientific inquiry, investigators are often interested in performing some screening of a collection of given statistical hypotheses. For example, they may wish to determine whether any one of several patient characteristics are associated with a health outcome of interest. Existing generic methods for testing a multivariate hypothesis -- such as multiplicity corrections applied to individual hypothesis tests -- can easily be applied across a variety of problems but can suffer from low power in some settings. Tailor-made procedures can attain higher power by building around problem-specific information but typically cannot be easily adapted to novel settings. In this work, we propose a general framework for testing a multivariate point null hypothesis in which the test statistic is adaptively selected to provide increased power. We present theoretical large-sample guarantees for our test under both fixed and local alternatives. In simulation studies, we show that tests created using our framework can perform as well as tailor-made methods when the latter are available, and we illustrate how our procedure can be used to create tests in two settings in which tailor-made methods are not currently available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源