论文标题
戴森的曲柄和单峰成分
Dyson's crank and unimodal compositions
论文作者
论文摘要
曲柄是戴森(Dyson)在1944年要求的分区统计量,以便将Euler的分区功能的Ramanujan一致性组合起来$ p(n)$。在本文中,我们提供了戴森的曲柄和单峰成分之间的联系。我们有些无关,给出了由于Xia和Zhao引起的新的截短的Euler五边形定理的组合证明。
The crank is a partition statistic requested by Dyson in 1944 in order to combinatorially prove a Ramanujan congruence of Euler's partition function $p(n)$. In this paper, we provide connections between Dyson's crank and unimodal compositions. Somewhat unrelated, we give a combinatorial proof of a new truncated Euler pentagonal number theorem due to Xia and Zhao.