论文标题
$ q $ -brauer代数和$ \ imath $ schur双重性的规范基础
Canonical bases of $q$-Brauer algebras and $\imath$Schur dualities
论文作者
论文摘要
扩大了Kazhdan-Lusztig的古典作品,我们在Wenzl引入的$ Q $ brauer代数上构建了一个律师互动和规范基础。我们在张量空间上定义了$ Q $ -BRAUER代数的明确操作,并分别在AI和AII类型AI和AII类型的$ Q $ -Brauer代数和$ \ imath $量子组之间制定$ \ imath $ schur二元。
Expanding the classical work of Kazhdan-Lusztig, we construct a bar involution and canonical bases on the $q$-Brauer algebra introduced by Wenzl. We define explicit actions of the $q$-Brauer algebra on the tensor spaces, and formulate $\imath$Schur dualities between the $q$-Brauer algebra and the $\imath$quantum groups of type AI and AII respectively.