论文标题

注意串联量以准确有效的立体声匹配

Attention Concatenation Volume for Accurate and Efficient Stereo Matching

论文作者

Xu, Gangwei, Cheng, Junda, Guo, Peng, Yang, Xin

论文摘要

立体声匹配是许多视觉和机器人应用程序的基本构建块。信息性和简洁的成本量表示对于高准确性和效率的立体声匹配至关重要。在本文中,我们提出了一种新颖的成本量结构方法,该方法从相关线索中产生了注意力,以抑制冗余信息并增强串联量中与匹配相关的信息。为了产生可靠的注意力权重,我们提出了多层次自适应补丁匹配,以提高在不同差异区域以不同差异的匹配成本的独特性。提出的成本量被命名为注意串联量(ACV),可以将其无缝嵌入大多数立体声匹配网络中,结果网络可以使用更轻巧的聚合网络,同时实现更高的精度,例如。仅使用聚合网络的1/25参数可以实现GWCNET的更高精度。此外,我们根据ACV设计了一个高度准确的网络(ACVNET),该网络(ACVNET)在几个基准上实现了最先进的性能。

Stereo matching is a fundamental building block for many vision and robotics applications. An informative and concise cost volume representation is vital for stereo matching of high accuracy and efficiency. In this paper, we present a novel cost volume construction method which generates attention weights from correlation clues to suppress redundant information and enhance matching-related information in the concatenation volume. To generate reliable attention weights, we propose multi-level adaptive patch matching to improve the distinctiveness of the matching cost at different disparities even for textureless regions. The proposed cost volume is named attention concatenation volume (ACV) which can be seamlessly embedded into most stereo matching networks, the resulting networks can use a more lightweight aggregation network and meanwhile achieve higher accuracy, e.g. using only 1/25 parameters of the aggregation network can achieve higher accuracy for GwcNet. Furthermore, we design a highly accurate network (ACVNet) based on our ACV, which achieves state-of-the-art performance on several benchmarks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源