论文标题

Viterbo在$ \ mathbb {r}^4 $中对Lagrangian产品的猜想,以及欧几里得球的符号切除型

Viterbo's conjecture for Lagrangian products in $\mathbb{R}^4$ and symplectomorphisms to the Euclidean ball

论文作者

Rudolf, Daniel

论文摘要

我们使用Lagrangian产品的EHZ容量的广义Minkowski台球表征,以谴责Lagrangian产品的$ 4 $维特波构想(任何三角形/平行四边形(在$ \ \ \ mathbb {r}^2 $ \ tims $ \ math)中,$ \ \ \ \ \ \ \ \ \ \米($ \ math) Lagrangian产品($ \ Mathbb {r}^2 $中的任何梯形$ \ times $($ \ Mathbb {r}^2 $中的任何凸面$)。基于此分析,我们将此版本的Viterbo猜想的平等案例进行了分类,并证明其中大多数可以被证明是欧几里得球的符号型。作为副产品,我们证明了尖锐的Minkowski台球 /蠕虫问题的不平等现象。此外,我们讨论了Lagrangian产品($ \ Mathbb {r}^2 $中的任何凸二维型$ \ times $($ \ Mathbb {r}^2 $中的任何凸面机构)为此,我们向Viterbo的猜想的真相表明,这是从挑战性的Euclideans ofclideans ofclideans的正面解决方案中遵循的。最后,我们表明,与Viterbo在$ \ Mathbb {R}^4 $中对Lagrangian产品的平等案例相关的流动相关 - 事实证明这是凸多型的 - 通常不是Zoll,但通常是较弱的Zoll属性,但几乎所有的特征性都远离了下降的面孔,并且远距离构成了封闭式和动作效果。

We use the generalized Minkowski billiard characterization of the EHZ-capacity of Lagrangian products in order to reprove that the $4$-dimensional Viterbo conjecture holds for the Lagrangian products (any triangle/parallelogram in $\mathbb{R}^2$)$\times$(any convex body in $\mathbb{R}^2$) and extend this fact to the Lagrangian products (any trapezoid in $\mathbb{R}^2$)$\times$(any convex body in $\mathbb{R}^2$). Based on this analysis, we classify equality cases of this version of Viterbo's conjecture and prove that most of them can be proven to be symplectomorphic to Euclidean balls. As a by-product, we prove sharp systolic Minkowski billiard / worm problem inequalities. Furthermore, we discuss the Lagrangian products (any convex quadrilateral in $\mathbb{R}^2$)$\times$(any convex body in $\mathbb{R}^2$) for which we show that the truth of Viterbo's conjecture would follow from the positive solution of a challenging Euclidean covering problem. Finally, we show that the flow associated to equality cases of Viterbo's conjecture for Lagrangian products in $\mathbb{R}^4$--which turn out to be convex polytopes--is not Zoll in general, but that a weaker Zoll property, namely, that every characteristic almost everywhere away from lower-dimensional faces is closed and action-minimizing, does apply.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源