论文标题
多孔介质中等温单相流的局部热力学描述
Local thermodynamic description of isothermal single-phase flow in porous media
论文作者
论文摘要
达西(Darcy)的多孔媒体运输定律就受到约束液体的巨大潜力赋予了新的本地热力学基础。使用非平衡分子动力学确定局部有效压力梯度,并研究了液压电导率和渗透率。确定在固体球的面部以面式的立方晶格中单相流的运输系数。孔隙率从最接近球体的最接近堆积变为纯流体中的统一性,而流体质量密度从稀释气的质量密度不等。 \ si {5.7e-20} {\ meter^2}和\ si {5.5e-17} {\ meter^2}之间的渗透性在\ si {5.7e-20} {\ meter^2}和\ si {\ si {\ si {\ si {\米。两种运输系数都取决于平均流体质量密度和孔隙率,但以不同的方式。这些结果为复杂介质中多相流体偶联转运的非平衡热力学研究奠定了基础。
Darcy's law for porous media transport is given a new local thermodynamic basis in terms of the grand potential of confined fluids. The local effective pressure gradient is determined using non-equilibrium molecular dynamics, and the hydraulic conductivity and permeability are investigated. The transport coefficients are determined for single-phase flow in face-centered cubic lattices of solid spheres. The porosity changed from that in the closest packing of spheres to near unity in a pure fluid, while the fluid mass density varied from that of a dilute gas to a dense liquid. The permeability varied between \SI{5.7e-20}{\meter^2} and \SI{5.5e-17}{\meter^2}, showing a porosity-dependent Klinkenberg effect. Both transport coefficients depended on the average fluid mass density and porosity but in different ways. These results set the stage for a non-equilibrium thermodynamic investigation of coupled transport of multi-phase fluids in complex media.