论文标题
用3D块骨料变压器表征肾脏结构
Characterizing Renal Structures with 3D Block Aggregate Transformers
论文作者
论文摘要
有效量化肾脏结构可以提供不同的空间环境,并促进肾脏形态的生物标志物发现。但是,由于数据效率低下,变压器模型的开发和评估以分割肾皮质,髓质和收集系统的开发和评估仍然具有挑战性。受视觉变压器中的层次结构的启发,我们提出了一种新的方法,该方法使用3D块聚集变压器在对比增强的CT扫描上分割肾脏组件。我们在机构审查委员会(IRB)批准下构建了第一批肾脏子结构细分数据集的肾脏分段数据集。我们的方法在具有数据效率设计的0.8308的基线方法上产生了最先进的性能(0.8467骰子)。 Pearson R在提出的方法和手动标准之间达到0.9891,并指示体积分析的强相关性和可重复性。我们将提出的方法扩展到公共套件数据集,与基于变压器的方法相比,该方法可提高准确性。我们表明,3D块聚集变压器可以在序列表示之间实现局部通信而无需修改自我注意力,并且可以作为表征肾脏结构的准确有效的量化工具。
Efficiently quantifying renal structures can provide distinct spatial context and facilitate biomarker discovery for kidney morphology. However, the development and evaluation of the transformer model to segment the renal cortex, medulla, and collecting system remains challenging due to data inefficiency. Inspired by the hierarchical structures in vision transformer, we propose a novel method using a 3D block aggregation transformer for segmenting kidney components on contrast-enhanced CT scans. We construct the first cohort of renal substructures segmentation dataset with 116 subjects under institutional review board (IRB) approval. Our method yields the state-of-the-art performance (Dice of 0.8467) against the baseline approach of 0.8308 with the data-efficient design. The Pearson R achieves 0.9891 between the proposed method and manual standards and indicates the strong correlation and reproducibility for volumetric analysis. We extend the proposed method to the public KiTS dataset, the method leads to improved accuracy compared to transformer-based approaches. We show that the 3D block aggregation transformer can achieve local communication between sequence representations without modifying self-attention, and it can serve as an accurate and efficient quantification tool for characterizing renal structures.