论文标题

与玻尔兹曼机器的图形聚类

Graph clustering with Boltzmann machines

论文作者

Miasnikof, Pierre, Bagherbeik, Mohammad, Sheikholeslami, Ali

论文摘要

图集聚类是将顶点分组为称为簇的密集连接的集合的过程。我们量身定制了从文献到这个问题的两个数学编程公式。在此过程中,我们获得了群体内密度最大化问题的启发式近似。我们使用两种变体的玻尔兹曼启发式方法来获得数值解决方案。为了进行基准测试,我们将解决方案质量和计算性能与使用商业求解器Gurobi获得的溶液质量和计算性能进行了比较。我们还将聚类质量与使用流行的Louvain模块化最大化方法获得的聚类质量进行了比较。我们的最初结果清楚地证明了我们问题表述的优势。他们还建立了玻尔兹曼机器的优越性,而不是传统的精确求解器。在较小的图形较小的情况下,Boltzmann机器提供与Gurobi相同的解决方案,但解决方案时间低的订单级数低。在较大且更复杂的图表的情况下,Gurobi无法在合理的时间范围内返回有意义的结果。最后,我们还注意到,我们的聚类配方,距离最小化和$ k $ - 麦德体的产量簇的质量均优于使用Louvain算法获得的簇。

Graph clustering is the process of grouping vertices into densely connected sets called clusters. We tailor two mathematical programming formulations from the literature, to this problem. In doing so, we obtain a heuristic approximation to the intra-cluster density maximization problem. We use two variations of a Boltzmann machine heuristic to obtain numerical solutions. For benchmarking purposes, we compare solution quality and computational performances to those obtained using a commercial solver, Gurobi. We also compare clustering quality to the clusters obtained using the popular Louvain modularity maximization method. Our initial results clearly demonstrate the superiority of our problem formulations. They also establish the superiority of the Boltzmann machine over the traditional exact solver. In the case of smaller less complex graphs, Boltzmann machines provide the same solutions as Gurobi, but with solution times that are orders of magnitude lower. In the case of larger and more complex graphs, Gurobi fails to return meaningful results within a reasonable time frame. Finally, we also note that both our clustering formulations, the distance minimization and $K$-medoids, yield clusters of superior quality to those obtained with the Louvain algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源