论文标题

Blazar TXS 1700+685的宽带光谱研究

Broadband Spectro-temporal Study on Blazar TXS 1700+685

论文作者

Banerjee, Anuvab, Nandi, Prantik, Prince, Raj, Khatoon, Rukaiya, Bose, Debanjan

论文摘要

我们试图提出一项多波长的可变性和相关研究,以及2021年5月的详细的多波带光谱特性,即Blazar Source TXS 1700+685的2021 $γ$ ray耀斑。来自\ textIt {fermi} -lat,\ textit {swift} -xrt/uvot以及无线电档案数据的多波长观察。我们从\ textIt {fermi} -lat观察中检测到的不同燃烧区域的通量倍增时间来估算源的可变性时间尺度,并使用最短的可变性时间来对最小多普勒因子和发射区域的尺寸构成约束。我们已经在$ \ sim $ 17天中检测到具有统计学意义的准周期振荡功能(QPO)。宽带发射在其耀斑状态下具有令人振奋的表现,并具有松弛的同步加速器和compton compton组件。从宽带光谱建模中,我们观察到源自宽线区域的种子光子的外部组合物与尘土飞扬相比是主要的。还发现发射区域还位于BLR之内,这进一步支持了这一事实。平选值意味着喷射磁场中磁场的能量密度很弱,并且也反映在磁场和低功率中,低功率对应于射流的磁场成分。为了产生高能量驼峰,我们需要注射大量的高能电子和/或存在强磁场。在我们的情况下,我们观察到后来的成分是亚主导的。 $γ$ ray sed中的平坦上升和陡峭的下降轮廓以及$ \ sim $ 1 GEV的突破或光谱曲率与源的平面光谱无线电类别(FSRQ)的性质相称。

We attempt to present a multiwavelength variability and correlation study as well as detailed multi-waveband spectral characteristics of the May 2021 $γ$-ray flare of the blazar source TXS 1700+685. The multi-wavelength observation from \textit{Fermi}-LAT, \textit{Swift}-XRT/UVOT as well as radio archival data are used for our spectro-temporal investigation. We estimate the variability time-scale of the source from the flux doubling time in different flaring regions detected in \textit{Fermi}-LAT observation and the shortest variability time is used to put a constraint on the minimum Doppler factor and on the size of the emission region. We have detected a statistically significant quasi-periodic oscillation feature (QPO) at $\sim$ 17 days. The broad-band emission is satisfactorily represented during its flaring state with a leptonic synchrotron and inverse Compton component. From the broadband spectral modeling, we observe the external Comptonization of the seed photons originating in the broad line region to be dominant compared to the dusty torus. This is further supported by the fact that the emission region is also found to be residing within the BLR. The equipartition value implies the energy density of the magnetic field in the jet comoving frame is weak, and that is also reflected in the magnetic field and low power corresponding to the magnetic field component of the jet. In order to produce the high energy hump, we need the injection of a large population of high energy electrons and/or the presence of strong magnetic field; and we observe the later component to be sub-dominant in our case. The flat rising and steep falling profile in the $γ$-ray SED as well as the break or spectral curvature at $\sim$ 1 GeV are in commensuration with the flat-spectrum radio quasar (FSRQ) nature of the source.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源