论文标题
通过重新连接的黑洞Coronae II中的重新连接浆液构建:电子离子等离子体
Comptonization by Reconnection Plasmoids in Black Hole Coronae II: Electron-Ion Plasma
论文作者
论文摘要
我们对具有强康普顿冷却的电子等离子体进行磁重新连接的二维粒子模拟,并计算此过程产生的X射线光谱。对磁性重新连接进行模拟,并用磁化$ 1 \leqσ\ leq 3 $(定义为磁张力与等离子静电 - 质量密度的比率),这是在黑孔周围的积聚磁盘中预期的。我们发现,磁耗散在加热离子和康普顿冷却电子之间的效率低下的能量交换过程中进行。结果,大多数电子在辐射的康普顿平衡中保持在低温,因此热量构造无法达到光子能量$ \ sim 100 $ keV,从积聚黑洞中观察到。然而,磁重新连接有效地生成$ \ sim 100 $ keV光子,因为在重新连接层中形成的浆液链的相对论散装运动有些相对论。浆液运动的组合占主导地位的辐射输出,并控制辐射光谱$ e _ {\ rm pk} $的峰值。我们发现$ e _ {\ rm pk} \ sim 40 $ kev for $σ= 1 $和$ e _ {\ rm pk} \ sim100 $ kev for $σ= 3 $。除了X射线峰值100 keV外,模拟还显示了一个非热的MEV尾巴,该尾巴由在重新连接层的X点附近产生的非热电子种群发出。结果与积聚黑洞的典型硬状态一致。特别是,我们发现Cygnus〜X-1的光谱通过$σ\ sim 3 $重新连接来很好地解释。
We perform two-dimensional particle-in-cell simulations of magnetic reconnection in electron-ion plasmas subject to strong Compton cooling and calculate the X-ray spectra produced by this process. The simulations are performed for trans-relativistic reconnection with magnetization $1\leq σ\leq 3$ (defined as the ratio of magnetic tension to plasma rest-mass density), which is expected in the coronae of accretion disks around black holes. We find that magnetic dissipation proceeds with inefficient energy exchange between the heated ions and the Compton-cooled electrons. As a result, most electrons are kept at a low temperature in Compton equilibrium with radiation, and so thermal Comptonization cannot reach photon energies $\sim 100$ keV observed from accreting black holes. Nevertheless, magnetic reconnection efficiently generates $\sim 100$ keV photons because of mildly relativistic bulk motions of the plasmoid chain formed in the reconnection layer. Comptonization by the plasmoid motions dominates the radiative output and controls the peak of the radiation spectrum $E_{\rm pk}$. We find $E_{\rm pk}\sim 40$ keV for $σ=1$ and $E_{\rm pk}\sim100$ keV for $σ=3$. In addition to the X-ray peak around 100 keV, the simulations show a non-thermal MeV tail emitted by a non-thermal electron population generated near X-points of the reconnection layer. The results are consistent with the typical hard state of accreting black holes. In particular, we find that the spectrum of Cygnus~X-1 is well explained by electron-ion reconnection with $σ\sim 3$.