论文标题

重新访问斜杆轨迹

Revisiting the pion Regge trajectories

论文作者

Chen, Jiao-Kai

论文摘要

我们提出了一个独立于模型的ansatz $ m = {β_x} \ left(x+c_0 \右)^ν+c_1 $($ x = l,\,\,n_r $),然后使用它来适合轨道和径向和径向的pion regge轨迹,而无需前提值。结果表明,非零$ C_1 $是合理且可以接受的。非零$ c_1 $在通常使用的$(m^2,\,x)$平面中对Pion Regge轨迹的非线性提供了解释。由于适当地选择了$ M_R $或$ C_1 $,因此轨道和径向式式雷格轨迹在$((m-m_r)^2,\,x)$ plane中均线性是线性的,无论$π^0 $是否包括在regge轨迹上。拟合的式式雷格轨迹建议$ 0.45 \ lev \ le0.5 $,它指示限制潜在的$ r^a $,$ 9/11 {\ le} a \ le1 $。此外,在附录B中说明了$ m_r $对于轻度nonstrange介子可能不是零。我们在附录A中介绍了有关$(m,\,x)$平面绘制的regge轨迹的结构的讨论,以及基于潜在模型和字符串模型的$((M-M_R)^2,\,x)$平面中$((M-M_R)^2,\,X)$平面的结构。

We propose a model-independent ansatz $M={β_x}\left(x+c_0\right)^ν+c_1$ ($x=l,\,n_r$) and then use it to fit the orbital and radial pion Regge trajectories without the preset values. It is shown that nonzero $c_1$ is reasonable and acceptable. Nonzero $c_1$ gives an explanation for the nonlinearity of the pion Regge trajectories in the usually employed $(M^2,\,x)$ plane. As $m_R$ or $c_1$ is chosen appropriately, both the orbital and radial pion Regge trajectories are linear in the $((M-m_R)^2,\,x)$ plane whether the $π^0$ is included or not on the Regge trajectories. The fitted pion Regge trajectories suggest $0.45\leν\le0.5$, which indicates the confining potential $r^a$ with $9/11{\le}a\le1$. Moreover, it is illustrated in the appendix B that $m_R$ can be nonzero for the light nonstrange mesons. We present discussions in the appendix A on the structure of the Regge trajectories plotted in the $(M,\,x)$ plane and on the structure of the Regge trajectories in the $((M-m_R)^2,\,x)$ plane based on the potential models and the string models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源