论文标题
离散$β$增强的全球大偏差原理
A global large deviation principle for discrete $β$-ensembles
论文作者
论文摘要
如Borodin,Gorin和Guionnet在(出版物数学{\'e} Matiques de l'ih {\'e} S 125,1-78,2017)中,我们考虑了离散的$β$增强物。在一般的假设下,我们为与这些模型相对应的经验(或光谱)措施建立了一个较大的偏差原理。我们的结果适用于模型的电势取决于颗粒数量和/或在无穷大附近的生长缓慢,从而导致无限支持的平衡度量。
We consider discrete $β$-ensembles, as introduced by Borodin, Gorin and Guionnet in (Publications math{\' e}matiques de l'IH{\' E}S 125, 1-78, 2017). Under general assumptions, we establish a large deviation principle for the empirical (or spectral) measures corresponding to these models. Our results apply in the cases when the potential of the model depends on the number of particles, and/or has slow growth near infinity, leading to an equilibrium measure with infinite support.