论文标题
高度准确的二分法分割
Highly Accurate Dichotomous Image Segmentation
论文作者
论文摘要
我们提出了一项针对一项称为二分图像分割(DIS)的新任务的系统研究,该任务旨在从自然图像中分割出高度准确的对象。为此,我们收集了第一个称为DIS5K的大规模DIS数据集,其中包含5,470个高分辨率(例如2K,4K或4K或更大)图像,这些图像涵盖了各种背景的伪装,显着或细致的物体。 DIS带有非常细粒的标签注释。此外,我们使用功能级和面具级别的模型培训指南介绍了一个简单的中间监督基线(IS-NET)。 IS-NET在拟议的DIS5K上的表现优于各种尖端基线,使其成为一个普遍的自学监督网络,可以促进DIS的未来研究。此外,我们设计了一种称为人类纠正工作(HCE)的新指标,该指标近似于纠正误报和假否定物所需的鼠标点击操作数量。 HCE用于测量模型与现实世界应用之间的差距,因此可以补充现有指标。最后,我们进行了最大规模的基准测试,评估了16个代表性分割模型,提供了有关对象复杂性的更有见地的讨论,并显示了几种潜在的应用(例如,背景删除,艺术设计,3D重建)。希望这些努力能为学术和行业开辟有希望的指示。项目页面:https://xuebinqin.github.io/dis/index.html。
We present a systematic study on a new task called dichotomous image segmentation (DIS) , which aims to segment highly accurate objects from natural images. To this end, we collected the first large-scale DIS dataset, called DIS5K, which contains 5,470 high-resolution (e.g., 2K, 4K or larger) images covering camouflaged, salient, or meticulous objects in various backgrounds. DIS is annotated with extremely fine-grained labels. Besides, we introduce a simple intermediate supervision baseline (IS-Net) using both feature-level and mask-level guidance for DIS model training. IS-Net outperforms various cutting-edge baselines on the proposed DIS5K, making it a general self-learned supervision network that can facilitate future research in DIS. Further, we design a new metric called human correction efforts (HCE) which approximates the number of mouse clicking operations required to correct the false positives and false negatives. HCE is utilized to measure the gap between models and real-world applications and thus can complement existing metrics. Finally, we conduct the largest-scale benchmark, evaluating 16 representative segmentation models, providing a more insightful discussion regarding object complexities, and showing several potential applications (e.g., background removal, art design, 3D reconstruction). Hoping these efforts can open up promising directions for both academic and industries. Project page: https://xuebinqin.github.io/dis/index.html.