论文标题

通过机器学习分子运动预测运输特性

Prediction of transport property via machine learning molecular movements

论文作者

Yasuda, Ikki, Kobayashi, Yusei, Endo, Katsuhiro, Hayakawa, Yoshihiro, Fujiwara, Kazuhiko, Yajima, Kuniaki, Arai, Noriyoshi, Yasuoka, Kenji

论文摘要

分子动力学(MD)模拟越来越多地与机器学习(ML)结合,以预测材料特性。从MD获得的分子构型由多种特征(例如热力学特性)表示,并用作ML输入。但是,要准确地找到输入模式,ML需要一个足够尺寸的数据集,该数据集取决于ML模型的复杂性。从MD模拟中生成如此大的数据集并不理想,因为它们的计算成本很高。在这项研究中,我们提出了一种简单的监督ML方法,以预测材料的运输特性。为了简化模型,一种无监督的ML方法获得了分子运动的有效表示。该方法用于预测与剪切流相比润滑分子的粘度。此外,简单性促进了模型的解释,以了解粘度的分子力学。我们揭示了两种类型的分子机制,这些机制导致低粘度。

Molecular dynamics (MD) simulations are increasingly being combined with machine learning (ML) to predict material properties. The molecular configurations obtained from MD are represented by multiple features, such as thermodynamic properties, and are used as the ML input. However, to accurately find the input--output patterns, ML requires a sufficiently sized dataset that depends on the complexity of the ML model. Generating such a large dataset from MD simulations is not ideal because of their high computation cost. In this study, we present a simple supervised ML method to predict the transport properties of materials. To simplify the model, an unsupervised ML method obtains an efficient representation of molecular movements. This method was applied to predict the viscosity of lubricant molecules in confinement with shear flow. Furthermore, simplicity facilitates the interpretation of the model to understand the molecular mechanics of viscosity. We revealed two types of molecular mechanisms that contribute to low viscosity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源