论文标题

基于GNN的工作调度程序的可扩展验证

Scalable Verification of GNN-based Job Schedulers

论文作者

Wu, Haoze, Barrett, Clark, Sharif, Mahmood, Narodytska, Nina, Singh, Gagandeep

论文摘要

最近,图形神经网络(GNN)已应用于群集上的调整工作,比手工制作的启发式方法更好。尽管表现令人印象深刻,但仍然担心这些基于GNN的工作调度程序是否满足用户对其他重要属性的期望,例如防止策略,共享激励和稳定。在这项工作中,我们考虑对基于GNN的工作调度程序的正式验证。我们解决了几个特定领域的挑战,例如网络,这些挑战比验证图像和NLP分类器时遇到的更深层的规格更丰富。我们开发了维加斯,这是基于精心设计的算法,将这些调度程序的单步和多步属性验证的第一个通用框架,它们结合了抽象,改进,求解器和证明转移。我们的实验结果表明,与以前的方法相比,在验证最先进的基于GNN的调度程序的重要特性时,维加斯实现了显着的加速。

Recently, Graph Neural Networks (GNNs) have been applied for scheduling jobs over clusters, achieving better performance than hand-crafted heuristics. Despite their impressive performance, concerns remain over whether these GNN-based job schedulers meet users' expectations about other important properties, such as strategy-proofness, sharing incentive, and stability. In this work, we consider formal verification of GNN-based job schedulers. We address several domain-specific challenges such as networks that are deeper and specifications that are richer than those encountered when verifying image and NLP classifiers. We develop vegas, the first general framework for verifying both single-step and multi-step properties of these schedulers based on carefully designed algorithms that combine abstractions, refinements, solvers, and proof transfer. Our experimental results show that vegas achieves significant speed-up when verifying important properties of a state-of-the-art GNN-based scheduler compared to previous methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源