论文标题

通过自适应暹罗跟踪的更改检测选择动态模板

Dynamic Template Selection Through Change Detection for Adaptive Siamese Tracking

论文作者

Kiran, Madhu, Nguyen-Meidine, Le Thanh, Sahay, Rajat, Cruz, Rafael Menelau Oliveira E, Blais-Morin, Louis-Antoine, Granger, Eric

论文摘要

近年来,暹罗追踪器最近引起了人们的关注,因为它们可以高速跟踪视觉对象。此外,采用跟踪器收集的目标样本用于在线学习的自适应跟踪方法已经达到了最先进的准确性。但是,由于目标对象的外观变化和变形,单个对象跟踪(SOT)仍然是现实世界应用中的一项挑战。学习所有收集的样品可能会导致灾难性遗忘,从而破坏跟踪模型。 在本文中,SOT被称为在线增量学习问题。提出了一种用于动态样本选择和内存重播的新方法,以防止模板损坏。特别是,我们提出了一种更改检测机制来检测对象外观的逐渐变化,并选择相应的样品进行在线适应。此外,引入了基于熵的样品选择策略,以维持多元化的辅助缓冲区以进行内存重播。我们提出的方法可以集成到利用在线学习进行模型适应的任何对象跟踪算法中。 在OTB-100,LASOT,UAV123和TRACKINGNET数据集上进行的广泛实验突出了我们方法的成本效益,以及其关键组件的贡献。结果表明,将我们提出的方法集成到最先进的自适应暹罗跟踪器中可以增加模板更新策略的潜在好处,并显着提高性能。

Deep Siamese trackers have recently gained much attention in recent years since they can track visual objects at high speeds. Additionally, adaptive tracking methods, where target samples collected by the tracker are employed for online learning, have achieved state-of-the-art accuracy. However, single object tracking (SOT) remains a challenging task in real-world application due to changes and deformations in a target object's appearance. Learning on all the collected samples may lead to catastrophic forgetting, and thereby corrupt the tracking model. In this paper, SOT is formulated as an online incremental learning problem. A new method is proposed for dynamic sample selection and memory replay, preventing template corruption. In particular, we propose a change detection mechanism to detect gradual changes in object appearance and select the corresponding samples for online adaption. In addition, an entropy-based sample selection strategy is introduced to maintain a diversified auxiliary buffer for memory replay. Our proposed method can be integrated into any object tracking algorithm that leverages online learning for model adaptation. Extensive experiments conducted on the OTB-100, LaSOT, UAV123, and TrackingNet datasets highlight the cost-effectiveness of our method, along with the contribution of its key components. Results indicate that integrating our proposed method into state-of-art adaptive Siamese trackers can increase the potential benefits of a template update strategy, and significantly improve performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源