论文标题
基于图形的计划作为自动驾驶汽车赛车的推论
Factor Graph-Based Planning as Inference for Autonomous Vehicle Racing
论文作者
论文摘要
因子图作为两部分图形模型,通过揭示图节点之间的局部连接提供结构化表示。这项研究探讨了因子图在建模自主赛车计划问题时的利用,并为传统的基于优化的配方提供了另一种观点。我们将计划问题建模为对因子图的概率推断,而因子节点捕获了运动目标的联合分布。通过利用优化和推理之间的二元性,可以通过最小二乘优化获得对因子图的最大后验估计的快速解决方案。此公式中固有的局部设计思维可确保运动目标取决于一小部分变量。我们利用因子图结构的局部性特征,将最小曲率路径和本地规划计算集成到统一算法中。这与全球和本地规划模块的常规分离有所不同,在全球范围内,曲率最小化发生在全球层面。对拟议框架的评估表明,整个赛道的累积曲率和平均速度表现出色。此外,结果突出了我们方法的计算效率。在认可所提出方法的结构设计优势和计算效率的同时,我们还解决了其局限性和概述未来研究的潜在方向。
Factor graph, as a bipartite graphical model, offers a structured representation by revealing local connections among graph nodes. This study explores the utilization of factor graphs in modeling the autonomous racecar planning problem, presenting an alternate perspective to the traditional optimization-based formulation. We model the planning problem as a probabilistic inference over a factor graph, with factor nodes capturing the joint distribution of motion objectives. By leveraging the duality between optimization and inference, a fast solution to the maximum a posteriori estimation of the factor graph is obtained via least-squares optimization. The localized design thinking inherent in this formulation ensures that motion objectives depend on a small subset of variables. We exploit the locality feature of the factor graph structure to integrate the minimum curvature path and local planning computations into a unified algorithm. This diverges from the conventional separation of global and local planning modules, where curvature minimization occurs at the global level. The evaluation of the proposed framework demonstrated superior performance for cumulative curvature and average speed across the racetrack. Furthermore, the results highlight the computational efficiency of our approach. While acknowledging the structural design advantages and computational efficiency of the proposed methodology, we also address its limitations and outline potential directions for future research.