论文标题

扭曲的伊瓦岛结的结

Twisted Iwasawa invariants of knots

论文作者

Tange, Ryoto, Ueki, Jun

论文摘要

让$ p $为质量数字,整数$ $ m $ to $ p $。本着算术拓扑的精神,我们介绍了扭曲的Iwasawa不变性的概念$λ,μ,μ,$ {\ rm gl} _n $ -presentations和$ \ \ \ \ m athbb {z}/m \ m \ m \ m \ m \ m \ mathb {z} \ times \ times \ times \ mathbb {z} = $ _________-------------------------------- = $ _-_-_-cover。除其他事项外,我们的植川不变的一组决定了结的属和纤维,产生了它们的刚度刚度。附有几个直观的例子。我们进一步证明了$μ= 0 $定理,用于$ {\ rm sl} _2 $ - 扭曲组的表述,并提供一些评论。

Let $p$ be a prime number and $m$ an integer coprime to $p$. In the spirit of arithmetic topology, we introduce the notions of the twisted Iwasawa invariants $λ, μ, ν$ of ${\rm GL}_N$-representations and $\mathbb{Z}/m\mathbb{Z}\times \mathbb{Z}_p$-covers of knots. We prove among other things that the set of Iwasawa invariants determine the genus and the fiberedness of a knot, yielding their profinite rigidity. Several intuitive examples are attached. We further prove the $μ=0$ theorem for ${\rm SL}_2$-representations of twist knot groups and give some remarks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源