论文标题
图形卷积网络的参数化量子电路的新型结构
Novel Architecture of Parameterized Quantum Circuit for Graph Convolutional Network
论文作者
论文摘要
最近,量子神经网络的实现基于嘈杂的中间尺度量子(NISQ)设备。参数化量子电路(PQC)就是这样的方法,其当前设计只能处理线性数据分类。但是,现实世界中的数据通常显示出拓扑结构。在机器学习字段中,基于经典的图形卷积层(GCL)的图形卷积网络(GCN)可以很好地处理拓扑数据。在本文中,灵感来自经典GCN的架构,以扩大PQC的功能,我们设计了一种新颖的PQC架构来实现量子GCN(QGCN)。更具体地说,我们首先基于量子GCL中的线性组合和权重矩阵实现相邻矩阵,然后通过堆叠多个GCL,获得QGCN。此外,我们首先遵循GCL的参数迁移规则,然后在QGCN上实现量子电路上的梯度。我们通过在CORA数据集上使用拓扑数据来评估QGCN的性能。数值模拟结果表明,QGCN的性能与其经典对应物GCN相同,相比之下,需要较少的可调参数。与传统的PQC相比,我们还验证了部署额外的相邻矩阵可以显着改善量子拓扑数据的分类性能。
Recently, the implementation of quantum neural networks is based on noisy intermediate-scale quantum (NISQ) devices. Parameterized quantum circuit (PQC) is such the method, and its current design just can handle linear data classification. However, data in the real world often shows a topological structure. In the machine learning field, the classical graph convolutional layer (GCL)-based graph convolutional network (GCN) can well handle the topological data. Inspired by the architecture of a classical GCN, in this paper, to expand the function of the PQC, we design a novel PQC architecture to realize a quantum GCN (QGCN). More specifically, we first implement an adjacent matrix based on linear combination unitary and a weight matrix in a quantum GCL, and then by stacking multiple GCLs, we obtain the QGCN. In addition, we first achieve gradients decent on quantum circuit following the parameter-shift rule for a GCL and then for the QGCN. We evaluate the performance of the QGCN by conducting a node classification task on Cora dataset with topological data. The numerical simulation result shows that QGCN has the same performance as its classical counterpart, the GCN, in contrast, requires less tunable parameters. Compared to a traditional PQC, we also verify that deploying an extra adjacent matrix can significantly improve the classification performance for quantum topological data.