论文标题

出生的Sigma模型中的复杂结构,T偶尔性和世界表激体款

Complex Structures, T-duality and Worldsheet Instantons in Born Sigma Models

论文作者

Kimura, Tetsuji, Sasaki, Shin, Shiozawa, Kenta

论文摘要

我们调查了$ 2D $维生的几何形状中的两倍(广义)复杂结构,其中T-偶尔对称性显然已实现。我们表明,时空的Kähler,Hyperkähler,Bi-Hermitian和Bi-Hyperclex结构在出生的几何形状中以两倍的结构实现。我们发现,天生的结构和广义的kähler(Hyperkähler)结构似乎是双重试验和分裂 - Quathernions的子代数。我们发现这些结构的一部分由Clifford代数分类。然后,我们在出生的Sigma模型中研究了世界表Istantons的T偶性性质。我们表明,凯勒(Kähler)几何形状中的intsantons以非平凡的方式与Bi-Hermitian几何形状有关。

We investigate doubled (generalized) complex structures in $2D$-dimensional Born geometries where T-duality symmetry is manifestly realized. We show that Kähler, hyperkähler, bi-hermitian and bi-hypercomplex structures of spacetime are implemented in Born geometries as doubled structures. We find that the Born structures and the generalized Kähler (hyperkähler) structures appear as subalgebras of bi-quaternions and split-tetra-quaternions. We find parts of these structures are classified by Clifford algebras. We then study the T-duality nature of the worldsheet instantons in Born sigma models. We show that the instantons in Kähler geometries are related to those in bi-hermitian geometries in a non-trivial way.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源