论文标题
来自高斯流程的数据中的主要特征识别应用于芬兰森林库存记录
Dominant-feature identification in data from Gaussian processes applied to Finnish forest inventory records
论文作者
论文摘要
在空间数据中,与位置相关的变化导致连接的结构称为特征。变化发生在不同的空间尺度上,可能源自不同的基础过程。这些量表中的每一个都有其自身的主要特征。在这里,我们介绍了一种统计方法,用于识别这些量表及其在高斯过程中数据中的主要特征。该识别涉及通过比例空间分解和评估特征属性的可靠特征,通过估计基础过程的协方差函数参数及其与潜在驱动因素的关联。我们使用这种优势特征鉴定方法分析了1920年代的芬兰森林库存数据,并确定最常见的芬兰树的基础面积估计量表,包括苏格兰松树,挪威云杉,桦树和其他本地落叶树。比较所得依赖性的特征及其在这些树种中的属性,我们确定了型和人为驱动因素对基础区域空间分布的不同影响。这些数据是第一次分析它们的变化规模,所得的依赖性图和估计是对Fennoscandia历史森林生态学的重要贡献。到目前为止,使用常规方法不可能进行这种分析。
In spatial data, location-dependent variation leads to connected structures known as features. Variations occur at different spatial scales and possibly originate from distinct underlying processes. Each of these scales is characterized by its own dominant features. Here we introduce a statistical method for identifying these scales and their dominant features in data from Gaussian processes. This identification involves credibly recognizing the dominant features by scale-space decomposition and assessing feature attributes by estimating covariance function parameters of the underlying processes and their associations to potential drivers. We analyze Finnish forest inventory data from the 1920s using this dominant-feature identification method and identify the scales of variation in basal area estimates of most common Finnish trees, including Scots pine, Norway spruce, birch, and other native deciduous trees. Comparing the resulting scale-dependent features and their attributes in these tree species, we identify the different effects of edaphic and anthropogenic drivers on the spatial distribution of their basal areas. These data are analyzed for the first time in terms of their scale of variation, and the resulting scale-dependent maps and estimates are an essential contribution to the historical forest ecology of Fennoscandia. Until now, this analysis was not possible with conventional methods.