论文标题

1:2:3中的周期轨道及其对开普勒51行星系统轨道动力学的影响

Periodic orbits in the 1:2:3 resonant chain and their impact on the orbital dynamics of the Kepler-51 planetary system

论文作者

Antoniadou, Kyriaki I., Voyatzis, George

论文摘要

太空任务发现了大量在(或接近)平均谐振(MMR)和共振链中发展的系外行星。通常,由于观察性局限性将混乱引起到系统的演变,特别是时间尺度尤其较短或更长的时间表,因此已发表的数据表现出很高的不确定性。我们通过探索相空间中的特定区域来提出对此类系统动态的研究。我们通过研究三个行星系统开普勒-51的长期轨道稳定性并偏爱或限制其数据来体现我们的方法。这是一个双重过程,分为两个步骤:在1:2:3谐振链中的定期轨道家族的计算以及通过动力学稳定性的地图可视化相位空间。我们为一般四体问题提供了新的结果。稳定的周期性轨道仅在低分子制度中发现。我们演示了三种可能的方案来保护开普勒51,每个方案随后是约束。首先,有2/1和3/2两型 - 两者MMR,其中$ e_b <0.02 $,因此这两种MMR持续了长时间跨度。其次,有1:2:3三体拉普拉斯般的共振,其中$ e_c <0.016 $和$ e_d <0.006 $是必需的,才能可行。第三,有组合包括内部行星2/1 mmr内部的1/1次级共振,对于外部行星,观察性偏心率,$ e_b $ and $ e_c $的外部行星对APSIDAL差异振荡。为了获得轨道元素的最佳扣除,本研究表明了基于与拟合过程并行执行的定期轨道进行动力分析的需求。

Space missions have discovered a large number of exoplanets evolving in (or close to) mean-motion resonances (MMRs) and resonant chains. Often, the published data exhibit very high uncertainties due to the observational limitations that introduce chaos into the evolution of the system on especially shorter or longer timescales. We propose a study of the dynamics of such systems by exploring particular regions in phase space. We exemplify our method by studying the long-term orbital stability of the three-planet system Kepler-51 and either favor or constrain its data. It is a dual process which breaks down in two steps: the computation of the families of periodic orbits in the 1:2:3 resonant chain and the visualization of the phase space through maps of dynamical stability. We present novel results for the general four-body problem. Stable periodic orbits were found only in the low-eccentricity regime. We demonstrate three possible scenarios safeguarding Kepler-51, each followed by constraints. Firstly, there are the 2/1 and 3/2 two-body MMRs, in which $e_b<0.02$, such that these two-body MMRs last for extended time spans. Secondly, there is the 1:2:3 three-body Laplace-like resonance, in which $e_c<0.016$ and $e_d<0.006$ are necessary for such a chain to be viable. Thirdly, there is the combination comprising the 1/1 secondary resonance inside the 2/1 MMR for the inner pair of planets and an apsidal difference oscillation for the outer pair of planets in which the observational eccentricities, $e_b$ and $e_c$, are favored as long as $e_d\approx 0$. With the aim to obtain an optimum deduction of the orbital elements, this study showcases the need for dynamical analyses based on periodic orbits performed in parallel to the fitting processes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源