论文标题

使用可编程的跨表面的振幅约束星座和反射模式设计,用于定向反向散射通信

Amplitude-Constrained Constellation and Reflection Pattern Designs for Directional Backscatter Communications Using Programmable Metasurface

论文作者

Wang, Wei, Zhu, Bincheng, Huang, Yongming, Zhang, Wei

论文摘要

可编程元面的大型反射器阵列能够通过被动边际成形提高反向散射通信的功率效率,因此有可能彻底改变反向散射通信的低数据率性质。在本文中,我们建议在反向散射通信带来的振幅约束下设计功率有效的高阶星座和反射模式。对于星座设计,我们采用幅度和相移键合(APSK)星座,并优化APSK的参数,例如环数,环半径和环间相位差。具体而言,我们为分解子问题中任意调制顺序的最佳环半径和相互差的封闭式解提供了封闭形式的溶液。对于反射模式设计,我们建议通过解决多目标优化问题来优化被动边界矢量,该问题最大化反射能力并确保在感兴趣的角度范围内光束均匀化。为了解决该问题,我们提出了一种恒定的元素迭代方法,该方法被证明是单调增加的,以最大程度地提高每个迭代中的目标函数。数值结果表明,拟议的APSK星座设计和反射模式设计优于可编程的跨表面启用反向散射通信中现有的调制和光束模式设计。

The large scale reflector array of programmable metasurfaces is capable of increasing the power efficiency of backscatter communications via passive beamforming and thus has the potential to revolutionize the low-data-rate nature of backscatter communications. In this paper, we propose to design the power-efficient higher-order constellation and reflection pattern under the amplitude constraint brought by backscatter communications. For the constellation design, we adopt the amplitude and phase-shift keying (APSK) constellation and optimize the parameters of APSK such as ring number, ring radius, and inter-ring phase difference. Specifically, we derive closed-form solutions to the optimal ring radius and interring phase difference for an arbitrary modulation order in the decomposed subproblems. For the reflection pattern design, we propose to optimize the passive beamforming vector by solving a multi-objective optimization problem that maximizes reflection power and guarantees beam homogenization within the interested angle range. To solve the problem, we propose a constant-modulus power iteration method, which is proven to be monotonically increasing, to maximize the objective function in each iteration. Numerical results show that the proposed APSK constellation design and reflection pattern design outperform the existing modulation and beam pattern designs in programmable metasurface enabled backscatter communications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源