论文标题

E2EC:一种基于端到端轮廓的高质量高速实例细分的方法

E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation

论文作者

Zhang, Tao, Wei, Shiqing, Ji, Shunping

论文摘要

基于轮廓的实例分割方法最近迅速开发,但具有粗糙和手工制作的前端轮廓初始化,限制了模型性能,以及经验和固定的后端预测标签标签顶点配对,这有助于学习困难。在本文中,我们介绍了一种新型基于轮廓的方法,名为E2EC,用于高质量实例分割。首先,E2EC应用了一种新颖的可学习轮廓初始化体系结构,而不是手工制作的轮廓初始化。这包括一个轮廓初始化模块,用于构建更明确的学习目标和一个全局轮廓变形模块,以更好地利用所有顶点的功能。其次,我们提出了一种新型的标签采样方案,称为多方向比对,以减少学习难度。第三,为了提高边界细节的质量,我们动态匹配了最合适的预测地面真实顶点对,并提出了名为“动态匹配损耗”的相应损耗函数。实验表明,E2EC可以在KITTI实例(KINS)数据集,语义边界数据集(SBD),CityScapes和Coco数据集上实现最先进的性能。 E2EC在实时应用程序中也有效使用,在NVIDIA A6000 GPU上的512*512图像的推理速度为36 fps。代码将在https://github.com/zhang-tao-whu/e2ec上发布。

Contour-based instance segmentation methods have developed rapidly recently but feature rough and hand-crafted front-end contour initialization, which restricts the model performance, and an empirical and fixed backend predicted-label vertex pairing, which contributes to the learning difficulty. In this paper, we introduce a novel contour-based method, named E2EC, for high-quality instance segmentation. Firstly, E2EC applies a novel learnable contour initialization architecture instead of hand-crafted contour initialization. This consists of a contour initialization module for constructing more explicit learning goals and a global contour deformation module for taking advantage of all of the vertices' features better. Secondly, we propose a novel label sampling scheme, named multi-direction alignment, to reduce the learning difficulty. Thirdly, to improve the quality of the boundary details, we dynamically match the most appropriate predicted-ground truth vertex pairs and propose the corresponding loss function named dynamic matching loss. The experiments showed that E2EC can achieve a state-of-the-art performance on the KITTI INStance (KINS) dataset, the Semantic Boundaries Dataset (SBD), the Cityscapes and the COCO dataset. E2EC is also efficient for use in real-time applications, with an inference speed of 36 fps for 512*512 images on an NVIDIA A6000 GPU. Code will be released at https://github.com/zhang-tao-whu/e2ec.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源