论文标题
一些多变量的RADO数字
Some multivariable Rado numbers
论文作者
论文摘要
方程的RADO数是与方程相关的Ramsey理论数量。令$ \ mathcal {e} $为线性方程。用$ \ operatorName {r} _r(\ Mathcal {e})$最小整数(如果存在),以使任何$ r $ -Coloring $ [1,\ operatotorname {r} {r} _r(r} _r(\ nathcal {e})$ nure nure nure nure nurs nure nure nurs of monochromantic solocation $ \ by $ {在本文中,我们给出了$ \ sum_ {i = 1}^{m-2} x_i+kx_+kx_ {m-1} = \ ell x_ {m x_ {m} $的$ \ sum_ {i = 1}^{m-2}^{m-2}^{m-2}^{m-2} = \ ell x_ {m} $的上限和下限。此外,我们在$ \ ell = m = 4 $和$ m = 5,\ ell = k+i \(1 \ leq i \ leq 5)$的情况下得出了一些结果。作为概括,线性方程$ \ Mathcal {e} _1,\ Mathcal {e} _2,...,\ Mathcal {E} _r $定义为最小的Integer,如果它存在于任何$ -COLORORON,\ emph {$ r $ -color rado numbers} $ \ mathcal {e} _1,\ Mathcal {e} _2,...,\ Mathcal {e} _r $定义为最小的Integer,如果它存在,则是任何$ r $ r $ -COLORON $ [1,\ operatorname {r} _r(\ Mathcal {e} _1,\ Mathcal {e} _2,...,\ Mathcal {e} _r)] $必须承认单色的解决方案,以对某些$ \ nathcal {e} _i $,$ 1 \ peq c r q r q i q r q。 $ \ operatorName {r} _r(\ Mathcal {e} _1,\ Mathcal {e} _2,...,\ Mathcal {e} _r)$的确切值以及$ \ opperatorname {r} _2 _2 _2(x+y = z,x y = z,x y y x = y 5k) $ \ operatatorName {r} _2(x+y = z,x+a = y)$由lovászlocal lemma给出。
The Rado number of an equation is a Ramsey-theoretic quantity associated to the equation. Let $\mathcal{E}$ be a linear equation. Denote by $\operatorname{R}_r(\mathcal{E})$ the minimal integer, if it exists, such that any $r$-coloring of $[1,\operatorname{R}_r(\mathcal{E})]$ must admit a monochromatic solution to $\mathcal{E}$. In this paper, we give upper and lower bounds for the Rado number of $\sum_{i=1}^{m-2}x_i+kx_{m-1}=\ell x_{m}$, and some exact values are also given. Furthermore, we derive some results for the cases that $\ell=m=4$ and $m=5, \ell=k+i \ (1\leq i\leq 5)$. As a generalization, the \emph{$r$-color Rado numbers} for linear equations $\mathcal{E}_1,\mathcal{E}_2,...,\mathcal{E}_r$ is defined as the minimal integer, if it exists, such that any $r$-coloring of $[1,\operatorname{R}_r(\mathcal{E}_1,\mathcal{E}_2,...,\mathcal{E}_r)]$ must admit a monochromatic solution to some $\mathcal{E}_i$, where $1\leq i\leq r$. A lower bound for $\operatorname{R}_r(\mathcal{E}_1,\mathcal{E}_2,...,\mathcal{E}_r)$ and the exact values of $\operatorname{R}_2(x+y=z,\ell x=y)=5k$ and $\operatorname{R}_2(x+y=z, x+a=y)$ was given by Lovász Local Lemma.