论文标题

部分可观测时空混沌系统的无模型预测

On the intrinsic dimensionality of Covid-19 data: a global perspective

论文作者

Varghese, Abhishek, Santos-Fernandez, Edgar, Denti, Francesco, Mira, Antonietta, Mengersen, Kerrie

论文摘要

本文旨在发展全球观点,即COVID-19案件,死亡和OXCGRT COVID-19严重指数的标准化人均增长率之间关系的复杂性,这是描述一个国家对锁定政策严格的措施。为了实现我们的目标,我们使用以贝叶斯混合模型(称为hidalgo)实现的异质固有维度估计器。我们确定COVID-19数据集可能会投射到两个低维流形上,而不会大量信息丢失。较低的维度表明,案件和人均死亡的标准化增长率和2020-2021范围内的OXCGRT COVID-19严格指数的强烈依赖性。考虑到低维结构,对于几乎没有参数的可观察到的Covid-19动力学模型可能是可行的。重要的是,我们确定了全球固有维度分布中的空间自相关。此外,我们强调说,高收入国家更有可能属于低维生歧管,这可能是由于人口老龄化,合并症和Covid-19的人均死亡率负担增加而产生的。最后,我们在整个COVID-19大流行中暂时将数据集分层以检查固有维度。

This paper aims to develop a global perspective of the complexity of the relationship between the standardised per-capita growth rate of Covid-19 cases, deaths, and the OxCGRT Covid-19 Stringency Index, a measure describing a country's stringency of lockdown policies. To achieve our goal, we use a heterogeneous intrinsic dimension estimator implemented as a Bayesian mixture model, called Hidalgo. We identify that the Covid-19 dataset may project onto two low-dimensional manifolds without significant information loss. The low dimensionality suggests strong dependency among the standardised growth rates of cases and deaths per capita and the OxCGRT Covid-19 Stringency Index for a country over 2020-2021. Given the low dimensional structure, it may be feasible to model observable Covid-19 dynamics with few parameters. Importantly, we identify spatial autocorrelation in the intrinsic dimension distribution worldwide. Moreover, we highlight that high-income countries are more likely to lie on low-dimensional manifolds, likely arising from aging populations, comorbidities, and increased per capita mortality burden from Covid-19. Finally, we temporally stratify the dataset to examine the intrinsic dimension at a more granular level throughout the Covid-19 pandemic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源