论文标题

基于仿真推理的变异方法

Variational methods for simulation-based inference

论文作者

Glöckler, Manuel, Deistler, Michael, Macke, Jakob H.

论文摘要

我们提出了顺序的神经变异推断(SNVI),这是一种在具有棘手的可能性模型中执行贝叶斯推断的方法。 SNVI结合了可能性估计(或似然比估计)与变异推断,以实现基于可扩展的模拟推断方法。 SNVI保持了可能性(-ratio)估计的灵活性,以允许进行模拟的任意建议,同时提供后分布的功能估计,而无需MCMC采样。我们提出了几种SNVI的变体,并证明它们在计算上比以前的算法更有效,而没有基准任务的准确性损失。我们将SNVI应用于螃蟹中幽门网络的神经科学模型,并证明它可以用比以前报道的较少的模拟阶数来推断后验分布。 SNVI大大降低了基于模拟的推断的计算成本,同时保持准确性和灵活性,从而解决了以前无法访问的问题。

We present Sequential Neural Variational Inference (SNVI), an approach to perform Bayesian inference in models with intractable likelihoods. SNVI combines likelihood-estimation (or likelihood-ratio-estimation) with variational inference to achieve a scalable simulation-based inference approach. SNVI maintains the flexibility of likelihood(-ratio) estimation to allow arbitrary proposals for simulations, while simultaneously providing a functional estimate of the posterior distribution without requiring MCMC sampling. We present several variants of SNVI and demonstrate that they are substantially more computationally efficient than previous algorithms, without loss of accuracy on benchmark tasks. We apply SNVI to a neuroscience model of the pyloric network in the crab and demonstrate that it can infer the posterior distribution with one order of magnitude fewer simulations than previously reported. SNVI vastly reduces the computational cost of simulation-based inference while maintaining accuracy and flexibility, making it possible to tackle problems that were previously inaccessible.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源