论文标题
量子网络中稳定态的转换
Transformations of Stabilizer States in Quantum Networks
论文作者
论文摘要
稳定器状态和图形状态在量子误差校正,基于测量的量子计算以及量子信息理论中的其他各种概念中发现了应用。在这项工作中,我们研究了稳定器状态之间的政党 - 本地克利福德(PLC)变换。这些转变是作为量子网络中局部操作的物理动机扩展而产生的,并访问网络某些节点之间的两部分纠缠。首先,我们表明图形状态之间的PLC转换等效于众所周知的局部补充的概括,该互补描述了图状态之间的局部Clifford转换。然后,我们引入了一个数学框架来研究稳定剂状态的PLC等效性,将其与双线性形式的元素的分类有关。该框架使我们能够研究稳定剂状态的分解为不可分解的产品的张量产品,即从纠缠产生集(例如)中分解为状态。虽然EGS的有限最高为$ 3 $派对[Bravyi等,J。Math。物理。 {\ bf 47},062106〜(2006)],我们表明,即使考虑政党 - 本地统一转换,即使在考虑$ 4 $和更多的聚会中,它也是无限的集合。此外,我们以$ 4 $ $ 10 $ $ QUBITS的价格明确计算EGS。最后,我们将框架概括为不等于$ 2 $的质量稳定器状态,这使我们能够证明Qudit稳定器的分解状态来自EGS的状态。
Stabilizer states and graph states find application in quantum error correction, measurement-based quantum computation and various other concepts in quantum information theory. In this work, we study party-local Clifford (PLC) transformations among stabilizer states. These transformations arise as a physically motivated extension of local operations in quantum networks with access to bipartite entanglement between some of the nodes of the network. First, we show that PLC transformations among graph states are equivalent to a generalization of the well-known local complementation, which describes local Clifford transformations among graph states. Then, we introduce a mathematical framework to study PLC equivalence of stabilizer states, relating it to the classification of tuples of bilinear forms. This framework allows us to study decompositions of stabilizer states into tensor products of indecomposable ones, that is, decompositions into states from the entanglement generating set (EGS). While the EGS is finite up to $3$ parties [Bravyi et al., J. Math. Phys. {\bf 47}, 062106~(2006)], we show that for $4$ and more parties it is an infinite set, even when considering party-local unitary transformations. Moreover, we explicitly compute the EGS for $4$ parties up to $10$ qubits. Finally, we generalize the framework to qudit stabilizer states in prime dimensions not equal to $2$, which allows us to show that the decomposition of qudit stabilizer states into states from the EGS is unique.