论文标题
希格斯束和syz几何形状
Higgs bundles and SYZ geometry
论文作者
论文摘要
使用非亚伯式霍奇理论用于抛物线式希格斯捆绑包,我们构建了无限的许多非统一双曲线仿射球,这些球体在三次启动的球体上模拟,单型在$ \ mathrm {Slrm {sl} _3 _3(\ mathbb {z}})中。这些引起了特殊拉格朗日圆环捆绑的非等法半流量calabi-yau指标,这是$ \ mathbb {r}^{3} $减去y-vertex的敞开球,从而回答了洛夫汀,Yau,Yau和Zaslow在[lyz lyz] [lyzerr] [lyzerr]的问题。
Using non-Abelian Hodge theory for parabolic Higgs bundles, we construct infinitely many non-congruent hyperbolic affine spheres modeled on a thrice-punctured sphere with monodromy in $\mathrm{SL}_3(\mathbb{Z})$. These give rise to non-isometric semi-flat Calabi-Yau metrics on special Lagrangian torus bundles over an open ball in $\mathbb{R}^{3}$ minus a Y-vertex, thereby answering a question raised by Loftin, Yau, and Zaslow in [LYZ], [LYZerr].