论文标题
辐射角动量和经典散射中的耗散作用
Radiated Angular Momentum and Dissipative Effects in Classical Scattering
论文作者
论文摘要
我们提出了一个新的公式,用于通过重力辐射在经典散射中带走的角动量$ j^{μν} $。该公式与辐射线性动量$ p^μ$的已知表达式结合在一起,由于散射而完成了一组辐射的繁殖电荷。我们通过非扰动形式的形式参数化$ p^μ$和$ j^{μν} $,并使用Poincare代数来得出精确的关系。由于静态(零频)模式,可以从Weinberg的软定理中得出$ J^{μν} $的贡献。使用散射幅度和有效场理论的工具,我们计算了辐射$ j^{μν} $,这是由于将两个无旋转粒子散射到牛顿常数$ g $中的三阶,但速度的所有订单。我们的形式因子分析阐明了Bini,Damour和Geralico在$ \ Mathcal {O}(g^3)$的能量和角动量损失之间发现的一种新颖关系。我们的新结果对$ \ Mathcal {O}(g^4)$的二进制散射具有几种非平地含义。我们给出了一个程序,以引导由于散射引起的庞康咖啡电荷的损失而产生有效的辐射反应力。
We present a new formula for the angular momentum $J^{μν}$ carried away by gravitational radiation in classical scattering. This formula, combined with the known expression for the radiated linear momentum $P^μ$, completes the set of radiated Poincare charges due to scattering. We parametrize $P^μ$ and $J^{μν}$ by non-perturbative form factors and derive exact relations using the Poincare algebra. There is a contribution to $J^{μν}$ due to static (zero-frequency) modes, which can be derived from Weinberg's soft theorem. Using tools from scattering amplitudes and effective field theory, we calculate the radiated $J^{μν}$ due to the scattering of two spinless particles to third order in Newton's constant $G$, but to all orders in velocity. Our form-factor analysis elucidates a novel relation found by Bini, Damour, and Geralico between energy and angular momentum loss at $\mathcal{O}(G^3)$. Our new results have several nontrivial implications for binary scattering at $\mathcal{O}(G^4)$. We give a procedure to bootstrap an effective radiation reaction force from the loss of Poincare charges due to scattering.