论文标题

嵌入时间卷积网络以进行节能PPG的心率监测

Embedding Temporal Convolutional Networks for Energy-Efficient PPG-Based Heart Rate Monitoring

论文作者

Burrello, Alessio, Pagliari, Daniele Jahier, Rapa, Pierangelo Maria, Semilia, Matilde, Risso, Matteo, Polonelli, Tommaso, Poncino, Massimo, Benini, Luca, Benatti, Simone

论文摘要

光杀解物学(PPG)传感器允许进行非侵入性和舒适的心率(HR)监测,适用于紧凑的腕部装置。不幸的是,运动伪影(MAS)严重影响监测精度,从而导致皮肤到传感器接口的高度变异性。基于将PPG信号与惯性传感器数据相结合,已经引入了几种数据融合技术来应对此问题。直到知道,商业和重新搜索解决方案都在计算上都是有效的,但不是很健壮,或者强烈依赖于手工调整的参数,这会导致概括性能差。 % 在这项工作中,我们通过提出一种基于PPG的HR估计的计算轻量级但强大的深度学习方法来解决这些局限性。具体而言,我们得出了一组各种时间卷积网络(TCN)进行人力资源估计,并利用神经体系结构搜索(NAS)。此外,我们还引入了ACTPPG,这是一种自适应算法,根据MAS的数量,可以在多个HR估计器中进行选择,以提高能源效率。我们在两个基准数据集上验证了我们的方法,在PPGDALIA上的平均绝对误差(MAE)的每分钟平均误差(MAE)的低至3.84节拍,这表现优于先前的先前先进。此外,我们将模型部署在低功率商业微控制器(STM32L4)上,在复杂性与准确性空间中获得了丰富的Pareto最佳解决方案。

Photoplethysmography (PPG) sensors allow for non-invasive and comfortable heart-rate (HR) monitoring, suitable for compact wrist-worn devices. Unfortunately, Motion Artifacts (MAs) severely impact the monitoring accuracy, causing high variability in the skin-to-sensor interface. Several data fusion techniques have been introduced to cope with this problem, based on combining PPG signals with inertial sensor data. Until know, both commercial and reasearch solutions are computationally efficient but not very robust, or strongly dependent on hand-tuned parameters, which leads to poor generalization performance. % In this work, we tackle these limitations by proposing a computationally lightweight yet robust deep learning-based approach for PPG-based HR estimation. Specifically, we derive a diverse set of Temporal Convolutional Networks (TCN) for HR estimation, leveraging Neural Architecture Search (NAS). Moreover, we also introduce ActPPG, an adaptive algorithm that selects among multiple HR estimators depending on the amount of MAs, to improve energy efficiency. We validate our approaches on two benchmark datasets, achieving as low as 3.84 Beats per Minute (BPM) of Mean Absolute Error (MAE) on PPGDalia, which outperforms the previous state-of-the-art. Moreover, we deploy our models on a low-power commercial microcontroller (STM32L4), obtaining a rich set of Pareto optimal solutions in the complexity vs. accuracy space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源