论文标题
Metacon:具有万亿概念元学习的统一预测片段系统
MetaCon: Unified Predictive Segments System with Trillion Concept Meta-Learning
论文作者
论文摘要
从谓词细分市场方面,对用户的准确了解在现代互联网企业的日常运营中起着至关重要的作用。然而,存在巨大的挑战限制数据质量,尤其是在长时间的预测任务上。在这项工作中,我们介绍了Metacon,这是我们的统一谓词细分市场,具有可扩展的数万亿个概念的元学习,可以解决这些挑战。它以平坦的概念表示为基础,总结了实体的异质数字足迹,共同将整个谓词任务视为一项单一学习任务,并利用有效的一阶元式式绩效保证利用有效的元学习方法来解决学习任务。专有生产数据集和公共结构化学习任务的实验表明,掌骨可以对最先进的建议和排名方法进行实质性改进。
Accurate understanding of users in terms of predicative segments play an essential role in the day to day operation of modern internet enterprises. Nevertheless, there are significant challenges that limit the quality of data, especially on long tail predictive tasks. In this work, we present MetaCon, our unified predicative segments system with scalable, trillion concepts meta learning that addresses these challenges. It builds on top of a flat concept representation that summarizes entities' heterogeneous digital footprint, jointly considers the entire spectrum of predicative tasks as a single learning task, and leverages principled meta learning approach with efficient first order meta-optimization procedure under a provable performance guarantee in order to solve the learning task. Experiments on both proprietary production datasets and public structured learning tasks demonstrate that MetaCon can lead to substantial improvements over state of the art recommendation and ranking approaches.