论文标题
与模糊数字共同建模评级响应和时间:心理测量数据的应用
Jointly modeling rating responses and times with fuzzy numbers: An application to psychometric data
论文作者
论文摘要
在几个研究领域,评级数据和响应时间已成功地用于展开阶段的过程,人类评估者通过这些过程对问卷和社会调查提供了回应。分析此类数据的标准方法的局限性是它需要使用独立的统计模型。尽管这提供了一种有效的方法来简化数据分析,但它可能涉及统计推断和解释方面的困难。从这个意义上讲,联合分析可能更有效。在本研究文章中,我们描述了一种通过模糊数字共同分析评级和响应时间的方法。已经采用了一个概率树模型框架来模糊评分数据,并且已经使用了四个参数三角模糊数字来整合清晰的响应和时间。最后,讨论了关于心理测量数据的真实案例研究,以说明所提出的方法。总体而言,我们为使用模糊数字作为摘要模型的问题提供了初步调查结果,以用其他信息表示评分数据(即响应时间)。结果表明,使用模糊数字会导致理论上的声音和更简约的数据分析方法,从而限制了标准数据分析程序可能发生的一些统计问题(例如,多个假设检验的问题)。
In several research areas, ratings data and response times have been successfully used to unfold the stage-wise process through which human raters provide their responses to questionnaires and social surveys. A limitation of the standard approach to analyze this type of data is that it requires the use of independent statistical models. Although this provides an effective way to simplify the data analysis, it could potentially involve difficulties with regards to statistical inference and interpretation. In this sense, a joint analysis could be more effective. In this research article, we describe a way to jointly analyze ratings and response times by means of fuzzy numbers. A probabilistic tree model framework has been adopted to fuzzify ratings data and four-parameter triangular fuzzy numbers have been used in order to integrate crisp responses and times. Finally, a real case study on psychometric data is discussed in order to illustrate the proposed methodology. Overall, we provide initial findings to the problem of using fuzzy numbers as abstract models for representing ratings data with additional information (i.e., response times). The results indicate that using fuzzy numbers lead to theoretically sound and more parsimonious data analysis methods, which limit some statistical issues that may occur with standard data analysis procedures (e.g., the problem of multiple hypothesis testing).